Subcellular dissemination of prothymosin alpha at normal physiology: immunohistochemical vis-a-vis western blotting perspective

BMC Physiology - Tập 16 - Trang 1-13 - 2016
Caroline Mwendwa Kijogi1,2, Christopher Khayeka-Wandabwa3,2, Keita Sasaki4, Yoshimasa Tanaka4, Hiroshi Kurosu4, Hayato Matsunaga4, Hiroshi Ueda4
1Department of Molecular Microbiology and Immunology, Division of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
2Institute of Tropical Medicine and Infectious Diseases-KEMRI (ITROMID-KEMRI), Nairobi, Kenya
3African Population and Health Research Center (APHRC), Nairobi, Kenya
4Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan

Tóm tắt

The cell type, cell status and specific localization of Prothymosin α (PTMA) within cells seemingly determine its function. PTMA undergoes 2 types of protease proteolytic modifications that are useful in elucidating its interactions with other molecules; a factor that typifies its roles. Preferably a nuclear protein, PTMA has been shown to function in the cytoplasm and extracellularly with much evidence leaning on pathognomonic status. As such, determination of its cellular distribution under normal physiological context while utilizing varied techniques is key to illuminating prospective validation of its distinct functions in different tissues. Differential distribution insights at normal physiology would also portent better basis for further clarification of its interactions and proteolytic modifications under pathological conditions like numerous cancer, ischemic stroke and immunomodulation. We therefore raised an antibody against the C terminal of PTMA to use in tandem with available antibody against the N terminal in a murine model to explicate the differences in its distribution in brain cell types and major peripheral organs through western blotting and immunohistochemical approaches. The newly generated antibody was applied against the N-terminal antibody to distinguish truncated versions of PTMA or deduce possible masking of the protein by other interacting molecules. Western blot analysis indicated presence of a truncated form of the protein only in the thymus, while immunohistochemical analysis showed that in brain hippocampus the full-length PTMA was stained prominently in the nucleus whereas in the stomach full-length PTMA staining was not observed in the nucleus but in the cytoplasm. Truncated PTMA could not be detected by western blotting when both antibodies were applied in all tissues examined except the thymus. However, immunohistochemistry revealed differential staining by these antibodies suggesting possible masking of epitopes by interacting molecules. The differential localization patterns observed in the context of nucleic versus cytoplasmic presence as well as punctate versus diffuse pattern in tissues and cell types, warrant further investigations as to the forms of PTMA interacting partners.

Tài liệu tham khảo

Goldstein AL. History of the discovery of the thymosins. Ann N Y Acad Sci. 2007;1112:1–13. Haritos AA, Goodall GJ, Horecker BL. Prothymosin alpha: isolation and properties of the major immunoreactive form of thymosin alpha 1 in rat thymus. Proc Natl Acad Sci U S A. 1984;81(4):1008–11. Haritos AA, Tsolas O, Horecker BL. Distribution of prothymosin alpha in rat tissues. Proc Natl Acad Sci U S A. 1984;81(5):1391–3. Dosil M, Freire M, Gomez-Marquez J. Tissue-specific and differential expression of prothymosin alpha gene during rat development. FEBS Lett. 1990;269(2):373–6. Enkemann SA, Ward RD, Berger SL. Mobility within the nucleus and neighboring cytosol is a key feature of prothymosin-alpha. J Histochem Cytochem. 2000;48(10):1341–55. Salvin SB, Horecker BL, Pan LX, Rabin BS. The effect of dietary zinc and prothymosin alpha on cellular immune responses of RF/J mice. Clin Immunol Immunopathol. 1987;43(3):281–8. Barbini L, Gonzalez R, Dominguez F, Vega F. Apoptotic and proliferating hepatocytes differ in prothymosin alpha expression and cell localization. Mol Cell Biochem. 2006;291(1-2):83–91. Mosoian A, Teixeira A, Burns CS, Khitrov G, Zhang W, Gusella L, et al. Influence of prothymosin-alpha on HIV-1 target cells. Ann N Y Acad Sci. 2007;1112:269–85. Pineiro A, Cordero OJ, Nogueira M. Fifteen years of prothymosin alpha: contradictory past and new horizons. Peptides. 2000;21(9):1433–46. Gomez-Marquez J, Rodriguez P. Prothymosin alpha is a chromatin-remodelling protein in mammalian cells. Biochem J. 1998;333(Pt 1):1–3. Hannappel E, Huff T. The thymosins. Prothymosin alpha, parathymosin, and beta-thymosins: structure and function. Vitam Horm. 2003;66:257–96. Martini PG, Delage-Mourroux R, Kraichely DM, Katzenellenbogen BS. Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity. Mol Cell Biol. 2000;20(17):6224–32. Tsai YS, Jou YC, Lee GF, Chen YC, Shiau AL, Tsai HT, et al. Aberrant prothymosin-alpha expression in human bladder cancer. Urology. 2009;73(1):188–92. Tzai TS, Tsai YS, Shiau AL, Wu CL, Shieh GS, Tsai HT. Urine prothymosin-alpha as novel tumor marker for detection and follow-up of bladder cancer. Urology. 2006;67(2):294–9. Tsitsiloni OE, Stiakakis J, Koutselinis A, Gogas J, Markopoulos C, Yialouris P, et al. Expression of alpha-thymosins in human tissues in normal and abnormal growth. Proc Natl Acad Sci U S A. 1993;90(20):9504–7. Dominguez F, Magdalena C, Cancio E, Roson E, Paredes J, Loidi L, et al. Tissue concentrations of prothymosin alpha: a novel proliferation index of primary breast cancer. Eur J Cancer. 1993;29a(6):893–7. Magdalena C, Dominguez F, Loidi L, Puente JL. Tumour prothymosin alpha content, a potential prognostic marker for primary breast cancer. Br J Cancer. 2000;82(3):584–90. Suzuki S, Takahashi S, Takahashi S, Takeshita K, Hikosaka A, Wakita T, et al. Expression of prothymosin alpha is correlated with development and progression in human prostate cancers. Prostate. 2006;66(5):463–9. Klimentzou P, Drougou A, Fehrenbacher B, Schaller M, Voelter W, Barbatis C, et al. Immunocytological and preliminary immunohistochemical studies of prothymosin alpha, a human cancer-associated polypeptide, with a well-characterized polyclonal antibody. J Histochem Cytochem. 2008;56(11):1023–31. Wu CG, Habib NA, Mitry RR, Reitsma PH, van Deventer SJ, Chamuleau RA. Overexpression of hepatic prothymosin alpha, a novel marker for human hepatocellular carcinoma. Br J Cancer. 1997;76(9):1199–204. Tripathi SC, Matta A, Kaur J, Grigull J, Chauhan SS, Thakar A, et al. Overexpression of prothymosin alpha predicts poor disease outcome in head and neck cancer. PLoS One. 2011;6(5), e19213. Leys CM, Nomura S, LaFleur BJ, Ferrone S, Kaminishi M, Montgomery E, et al. Expression and prognostic significance of prothymosin-alpha and ERp57 in human gastric cancer. Surgery. 2007;141(1):41–50. Sasaki H, Fujii Y, Masaoka A, Yamakawa Y, Fukai I, Kiriyama M, et al. Elevated plasma thymosin-alpha1 levels in lung cancer patients. Eur J Cardiothorac Surg. 1997;12(6):885–91. Sasaki H, Nonaka M, Fujii Y, Yamakawa Y, Fukai I, Kiriyama M, et al. Expression of the prothymosin-a gene as a prognostic factor in lung cancer. Surg Today. 2001;31(10):936–8. Sasaki H, Sato Y, Kondo S, Fukai I, Kiriyama M, Yamakawa Y, et al. Expression of the prothymosin alpha mRNA correlated with that of N-myc in neuroblastoma. Cancer Lett. 2001;168(2):191–5. Ojima E, Inoue Y, Miki C, Mori M, Kusunoki M. Effectiveness of gene expression profiling for response prediction of rectal cancer to preoperative radiotherapy. J Gastroenterol. 2007;42(9):730–6. Karetsou Z, Sandaltzopoulos R, Frangou-Lazaridis M, Lai CY, Tsolas O, Becker PB, et al. Prothymosin alpha modulates the interaction of histone H1 with chromatin. Nucleic Acids Res. 1998;26(13):3111–8. Karetsou Z, Kretsovali A, Murphy C, Tsolas O, Papamarcaki T. Prothymosin alpha interacts with the CREB-binding protein and potentiates transcription. EMBO Rep. 2002;3(4):361–6. Su BH, Tseng YL, Shieh GS, Chen YC, Shiang YC, Wu P, et al. Prothymosin alpha overexpression contributes to the development of pulmonary emphysema. Nat Commun. 2013;4:1906. Karapetian RN, Evstafieva AG, Abaeva IS, Chichkova NV, Filonov GS, Rubtsov YP, et al. Nuclear oncoprotein prothymosin alpha is a partner of Keap1: implications for expression of oxidative stress-protecting genes. Mol Cell Biol. 2005;25(3):1089–99. Niture SK, Jaiswal AK. Prothymosin-alpha mediates nuclear import of the INrf2/Cul3 Rbx1 complex to degrade nuclear Nrf2. J Biol Chem. 2009;284(20):13856–68. Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, Kofron J, et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science. 2003;299(5604):223–6. Markova OV, Evstafieva AG, Mansurova SE, Moussine SS, Palamarchuk LA, Pereverzev MO, et al. Cytochrome c is transformed from anti- to pro-oxidant when interacting with truncated oncoprotein prothymosin alpha. Biochim Biophys Acta. 2003;1557(1-3):109–17. Malicet C, Giroux V, Vasseur S, Dagorn JC, Neira JL, Iovanna JL. Regulation of apoptosis by the p8/prothymosin alpha complex. Proc Natl Acad Sci U S A. 2006;103(8):2671–6. Evstafieva AG, Belov GA, Kalkum M, Chichkova NV, Bogdanov AA, Agol VI, et al. Prothymosin alpha fragmentation in apoptosis. FEBS Lett. 2000;467(2-3):150–4. Evstafieva AG, Belov GA, Rubtsov YP, Kalkum M, Joseph B, Chichkova NV, et al. Apoptosis-related fragmentation, translocation, and properties of human prothymosin alpha. Exp Cell Res. 2003;284(2):211–23. Enkemann SA, Wang RH, Trumbore MW, Berger SL. Functional discontinuities in prothymosin alpha caused by caspase cleavage in apoptotic cells. J Cell Physiol. 2000;182(2):256–68. Skopeliti M, Iconomidou VA, Derhovanessian E, Pawelec G, Voelter W, Kalbacher H, et al. Prothymosin alpha immunoactive carboxyl-terminal peptide TKKQKTDEDD stimulates lymphocyte reactions, induces dendritic cell maturation and adopts a beta-sheet conformation in a sequence-specific manner. Mol Immunol. 2009;46(5):784–92. Ueda H, Fujita R, Yoshida A, Matsunaga H, Ueda M. Identification of prothymosin-alpha1, the necrosis-apoptosis switch molecule in cortical neuronal cultures. J Cell Biol. 2007;176(6):853–62. Fujita R, Ueda H. Prothymosin-alpha1 prevents necrosis and apoptosis following stroke. Cell Death Differ. 2007;14(10):1839–42. Matsunaga H, Ueda H. Stress-induced non-vesicular release of prothymosin-alpha initiated by an interaction with S100A13, and its blockade by caspase-3 cleavage. Cell Death Differ. 2010;17(11):1760–72. Sarandeses CS, Covelo G, Diaz-Jullien C, Freire M. Prothymosin alpha is processed to thymosin alpha 1 and thymosin alpha 11 by a lysosomal asparaginyl endopeptidase. J Biol Chem. 2003;278(15):13286–93. Kishiro Y, Kagawa M, Naito I, Sado Y. A novel method of preparing rat-monoclonal antibody-producing hybridomas by using rat medial iliac lymph node cells. Cell Struct Funct. 1995;20(2):151–6. Sado Y, Inoue S, Tomono Y, Omori H. Lymphocytes from enlarged iliac lymph nodes as fusion partners for the production of monoclonal antibodies after a single tail base immunization attempt. Acta Histochemica Cytochemica. 2006;39(3):89–94. Ueda H, Matsunaga H, Halder SK. Prothymosin alpha plays multifunctional cell robustness roles in genomic, epigenetic, and nongenomic mechanisms. Ann N Y Acad Sci. 2012;1269:34–43. Teixeira A, Yen B, Gusella GL, Thomas AG, Mullen MP, Aberg J, et al. Prothymosin alpha variants isolated from CD8+ T cells and cervicovaginal fluid suppress HIV-1 replication through type I interferon induction. J Infect Dis. 2015;211(9):1467–75. Aniello F, Branno M, De Rienzo G, Ferrara D, Palmiero C, Minucci S. First evidence of prothymosin alpha in a non-mammalian vertebrate and its involvement in the spermatogenesis of the frog Rana esculenta. Mech Dev. 2002;110(1-2):213–7. Paolo Pariante, Raffaele Dotolo, Massimo Venditti, Diana Ferrara, Aldo Donizetti, Francesco Aniello and Sergio Minucci. Prothymosin alpha expression and localization during the spermatogenesis of Danio rerio. Zygote, available on CJO2015. doi:10.1017/S0967199415000568 Prisco M, Donizetti A, Aniello F, Locascio A, Del Giudice G, Agnese M, et al. Expression of Prothymosin alpha during the spermatogenesis of the spotted ray Torpedo marmorata. Gen Comp Endocrinol. 2009;164(1):70–6. Donizetti A, Liccardo D, Esposito D, Del Gaudio R, Locascio A, Ferrara D, et al. Differential expression of duplicated genes for prothymosin alpha during zebrafish development. Dev Dyn. 2008;237(4):1112–8. Costopoulou D, Leondiadis L, Czarnecki J, Ferderigos N, Ithakissios DS, Livaniou E, et al. Direct ELISA method for the specific determination of prothymosin alpha in human specimens. J Immunoass. 1998;19(4):295–316.