Sub-sensory vibratory noise augments the physiologic complexity of postural control in older adults
Tóm tắt
Postural control requires numerous inputs interacting across multiple temporospatial scales. This organization, evidenced by the “complexity” contained within standing postural sway fluctuations, enables diverse system functionality. Age-related reduction of foot-sole somatosensation reduces standing postural sway complexity and diminishes the functionality of the postural control system. Sub-sensory vibrations applied to the foot soles reduce the speed and magnitude of sway and improve mobility in older adults. We thus hypothesized that these vibration-induced improvements to the functionality of the postural control system are associated with an increase in the standing postural sway complexity. Twelve healthy older adults aged 74 ± 8 years completed three visits to test the effects of foot sole vibrations at 0 % (i.e., no vibration), 70 and 85 % of the sensory threshold. Postural sway was assessed during eyes-open and eyes-closed standing. The complexity of sway time-series was quantified using multiscale entropy. The timed up-and-go (TUG) was completed to assess mobility. When standing without vibration, participants with lower foot sole vibratory thresholds (better sensation) had greater mediolateral (ML) sway complexity (r
2 = 0.49, p < 0.001), and those with greater ML sway complexity had faster TUG times (better mobility) (r
2 = 0.38, p < 0.001). Foot sole vibrations at 70 and 85 % of sensory threshold increased ML sway complexity during eyes-open and eyes-closed standing (p < 0.0001). Importantly, these vibration-induced increases in complexity correlated with improvements in the TUG test of mobility (r
2 = 0.15 ~ 0.42, p < 0.001 ~ 0.03). Sub-sensory foot sole vibrations augment the postural control system functionality and such beneficial effects are reflected in an increase in the physiologic complexity of standing postural sway dynamics.
Tài liệu tham khảo
Winter DA, Patla AE, Frank JS. Assessment of balance control in humans. Med Prog Technol. 1990;16:31–51.
Ivanov PC, Amaral LN, Goldberger AL, Stanley HE. Stochastic feedback and the regulation of biological rhythms. Europhys Lett. 1998;43:363.
Lipsitz LA. Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A-Bio. 2002;57:B115–25.
Lipsitz LA. Physiological complexity, aging, and the path to frailty. Sci Aging Knowledge Environ. 2009;16:pe16.
Zhou J, Manor B, Liu D, Hu K, Zhang J, Jing F. The complexity of standing postural control in older adults: a modified detrended fluctuation analysis based upon the empirical mode decomposition algorithm. PLoS ONE. 2013;8(5):e62585.
Costa MD, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89:068102.
Duarte M, Sternad D. Complexity of human postural control in young and older adults during prolonged standing. Exp Brain Res. 2008;191:265–76.
Manor B, Lipsitz LA. Physiologic complexity and aging: Implications for physical function and rehabilitation. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:287–93.
Eils E, Behrens S, Mers O, Thorwesten L, Völker K, Rosenbaum D. Reduced plantar sensation causes a cautious walking pattern. Gait Posture. 2004;20:4–60.
Manor B, Costa MD, Hu K, Newton E, Starobinets O, Kang HG, et al. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J Appl Physiol. 2010;109:1786–91.
Kang HG, Costa MD, Priplata AA, Starobinets O, Goldberger AL, Peng CK, et al. Frailty and the degradation of complex balance dynamics during a dual-task protocol. J Gerontol Series A-Bio. 2009;64:1304–11.
Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. J Phys A-Math Gen. 1981;14:L453.
Collins JJ, Imhoff TT, Grigg P. Noise-enhanced tactile sensation. Nature. 1996;383:770.
Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic resonance. Rev Mod Phys. 1998;70:223.
Sejdic E, Lipsitz LA. Necessity of noise in physiology and medicine. Comput Methods Programs Biomed. 2013;111:459–70.
Costa MD, Priplata AA, Lipsitz LA, Wu Z, Huang NE, Goldberger AL, et al. Noise and poise: enhancement of postural complexity in the elderly with a stochastic-resonance–based therapy. Europhys Lett. 2007;77:68008.
Galica AM, Kang HG, Priplata AA, D’Andrea SE, Starobinets OV, Sorond FA, et al. Subsensory vibrations to the feet reduce gait variability in elderly fallers. Gait Posture. 2009;30:383–7.
Lipsitz LA, Lough M, Niemi JB, Travison T, Howlett H, Manor B. A shoe insole delivering subsensory vibratory noise improves balance and gait in healthy elderly people. Arch Phys Med Rehab. 2015;96:432–9.
Zhou D, Zhou J, Chen H, Manor B, Lin J, Zhang J. Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults. Exp Brain Res. 2015;233:2401–9.
Lipsitz LA, Goldberger AL. Loss of ‘complexity’ and aging: potential applications of fractals and chaos theory to senescence. JAMA. 1992;267:1806–9.
Manor B, Lipsitz LA, Wayne PM, Peng CK, Li L. Complexity-based measures inform tai chi’s impact on standing postural control in older adults with peripheral neuropathy. BMC Complement Altern Med. 2013;13:87.
Costa MD, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Phys Rev E. 2005;71:021906.
Priplata AA, Niemi JB, Salen M, Harry J, Lipsitz LA, Collins JJ. Noise-enhanced human balance control. Phys Rev Lett. 2002;89:238101.
Priplata AA, Patritti BL, Niemi JB, Hughes R, Gravelle DC, Lipsitz LA, et al. Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol. 2006;59:4–12.
Lafond D, Corriveau H, Prince F. Postural control mechanisms during quiet standing in patients with diabetic sensory neuropathy. Diabetes Care. 2004;27:173–8.
Giacomozzi C, Caselli A, Macellari V, Giurato L, Lardieri L, Uccioli L. Walking strategy in diabetic patients with peripheral neuropathy. Diabetes Care. 2002;25:1451–7.
Bernard-Demanze L, Vuillerme N, Ferry M, Berger L. Can tactile plantar stimulation improve postural control of persons with superficial plantar sensory deficit? Aging Clin Exp Res. 2009;21:62–8.
Lord SR, Rogers MW, Howland A, Fitzpatrick R. Lateral stability, sensorimotor function and falls in older people. J Am Geriatr Soc. 1999;47:1077–81.
Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8.