Sub‐10‐fs Timing for Ultrafast Electron Diffraction with THz‐Driven Streak Camera

Laser and Photonics Reviews - Tập 15 Số 2 - 2021
Junho Shin1, Hyun Woo Kim1, In Hyung Baek1, Seong Hee Park1, Hyeon Sang Bark1, Key Young Oang1, Kyu‐Ha Jang1, Kitae Lee1, Fabıan Rotermund2, Young Uk Jeong1, Jungwon Kim2
1Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon, 34057 Republic of Korea
2Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

Tóm tắt

AbstractUltrafast electron diffraction (UED) has evolved to be a powerful tool for the study of structural dynamics with subpicosecond temporal resolution and subatomic spatial resolution. Recently, there have been intense research efforts toward femtosecond timing jitter and stability for improving the temporal resolution of UEDs, however, so far there has been no work showing long‐term (e.g., >1 h) stable timing for MeV‐level UED systems. In this article, a comprehensive timing synchronization method, based on optical‐radiofrequency synchronization and THz streaking, is demonstrated to maintain sub‐10‐fs long‐term timing stability for radiofrequency‐gun‐based MeV‐level UED, which results in 5.5 fs root‐mean‐square timing drift maintained over 4600 s. With high electron energy and low timing drift, the demonstrated capability is an important step toward studying ultrafast phenomena in samples with low scattering power, such as volatile gases and 2D materials.

Từ khóa


Tài liệu tham khảo

10.1088/0034-4885/74/9/096101

10.1038/nature12664

10.1063/1.4798518

10.1039/C6FD00071A

10.1126/science.aat0049

10.1088/1367-2630/17/6/063004

10.1039/C4FD00204K

10.1126/sciadv.1602388

10.1021/acs.nanolett.5b02805

10.1063/1.5120864

10.1016/j.nima.2009.03.236

10.1364/OL.32.002487

10.1103/PhysRevAccelBeams.21.082801

10.1103/PhysRevLett.113.235502

10.1038/s41467-017-01360-3

10.1103/PhysRevApplied.11.024034

10.1126/science.aae0003

10.1038/s41566-018-0138-z

10.1103/PhysRevAccelBeams.19.081302

10.1038/srep14899

10.1364/OPTICA.6.000872

10.1364/OE.22.027102

Lamb T., 2019, 39th Free Electron Laser Conf., 343

10.1038/srep39966

10.1103/PhysRevApplied.4.044013

10.1088/1367-2630/18/8/083033

10.1063/1.4989960

10.1103/PhysRevLett.124.054802

10.1103/PhysRevLett.124.054801

Kim H. W., 2020, Nat. Photonics, 10, 1038

A.Winter E.‐A.Knabbe S.Simrock B.Steffen N.Ignashin A.Simonov S.Sytov inProceedings of the 2005 Particle Accelerator Conference IEEE TN USA2005 p.4299.

10.1109/JPHOT.2011.2109703

10.1364/OL.29.002076

10.1364/OL.31.003659

10.1109/JLT.2016.2547880

10.1109/JPHOT.2013.2267533

10.1038/s41566-020-0586-0

Kalaydzhyan A., 2016, 30th European Frequency and Time Forum, 7477846

Safak K., 2019, 39th Free Electron Laser Conference, 322

10.1038/nphoton.2008.225

10.1038/lsa.2016.187

10.1007/s41365-018-0419-8

10.1364/OL.37.002958

10.1364/OL.43.001447

10.1364/OE.20.003443

10.1364/OE.21.019982

10.1364/OL.41.000898

10.1103/PhysRevSTAB.17.040702

A Space Charge Tracking Algorithm http://www.desy.de/~mpyflo(accessed: July2020).

10.1038/srep05645

10.1103/PhysRevAccelBeams.22.012803

10.1109/18.720541

10.1063/4.0000012

K.Gumerlock J.Frisch B.Hill J.May D.Nelson S.Smith inProceedings of Free Electron Laser 2014 JACoW Publishing Basel Switzerland2014 p.917.

10.1063/1.4926994

Zhao L., 2018, Phys. Rev. X, 8, 021061

10.1103/PhysRevLett.124.134803

10.1016/j.nima.2017.01.003

10.1063/1.4892135

10.1063/1.2801027

10.3938/jkps.73.466