Nghiên cứu ảnh hưởng của chiều cao và góc dốc đến hệ số an toàn và hình dạng của sự cố sạt lở dựa trên phương pháp phân tích giảm sức chịu tải
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pourkhosravani, Amin and Kalantari, Behzad. s.l. A review of current methods for slope stability evaluation: Electron J Geotechnical Eng, 2011, Vol. 16, pp. 1245-1254.
Halder A, Nandi S, Bandyopadhyay K (2020) A comparative study on slope stability analysis by different approaches. Geotechnical Characterization and Modelling. Lecture Notes in Civil Engineering, vol. 85. Springer, Singapore. https://doi.org/10.1007/978-981-15-6086-6_23.
Morgenstern NR (1992) The evaluation of slope stability— a 25 year perspective. ASCE Special Geotechnical Publication No 31. https://doi.org/10.1016/0148-9062(93)93166-U.
Yang XL, Huang F (2009) Slope stability analysis considering joined influences of nonlinearity and dilation, vol. 16. School of Civil and Architectural Engineering, Central South University, Changsha, pp. 292–296. https://doi.org/10.1007/s11771−009−0050−2
Albataineh N (2006) Slope stability analysis using 2D and 3D methods. The University of Akron, https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=akron1153719372&disposition=attachment
Boutrup, E. and Lovell, C. s.l. Searching techniques in slope stability analysis: Eng Geol, 1980, Vol. 16, 1, pp. 51-61.
Siegel RA (1975) Computer analysis of general slope stability problems. Joint Highway Research Project, Indiana Department of Transportation and Purdue University, West Lafayette, Indiana, 1975, Vols. Publication FHWA/IN/JHRP-75/08. https://doi.org/10.5703/1288284313895.
Carter RK (1971) Computer oriented slope stability analysis by method of slices. Thesis, Purdue University, West Lafayette
Goh, A. T. Genetic algorithm search for critical slip surface in multiple-wedge stability analysis. s.l. : Can Geotechnical J, 1999. Vol. 36, 2, pp. 382-391.
Zolfaghari, A. R., Heath, A. C. and McCombie, P. F. Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. s.l. : Comput Geotechnics, 2005. Vol. 32, 3, pp. 139-152.
Bolton, H., Heymann, G. and Groenwold, A. Global search for critical failure surface in slope stability analysis. s.l. : Eng Optimization, 2003. Vol. 35, 1, pp. 51-65.
Cheng, Y. Location of critical failure surface and some further studies on slope stability analysis. s.l. : Comput Geotechnics, 2003. Vol. 30, 3, pp. 255-267.
Souna, Fethi, Lakmeche, Abdelkader and Djilali, Salih. The effect of the defensive strategy taken by the prey on predator–prey interaction. J Appl Math Comput, 2020, Vol. 64, pp. 665–690. https://doi.org/https://doi.org/10.1007/s12190-020-01373-0.
Djilali, Salih, et al. Turing-Hopf bifurcation in a diffusive mussel-algae model with time-fractional-order derivative. s.l. : Chaos Solitons Fractals, 2020, Vol. 138(C). DOI: https://doi.org/10.1016/j.chaos.2020.109954.
Djilali, Salih, Touaoula, Tarik Mohammed and Miri, Sofiane El-Hadi. A heroin epidemic model: very general non linearincidence, treat-age, and global stability. s.l. : Acta Applicandae Mathematicae, 2017, Vol. 152. DOI https://doi.org/10.1007/s10440-017-0117-2, 1, 194.
Boudjema, Ismail and Djilali, Salih. Turing-Hopf bifurcation in Gauss-type model with cross diffusion and its application. s.l. : Nonlinear Stud, 2018, Vol. 25, 3, pp. 665-687.
Indra NH, Helmut F (2011) Slope stability analysis of unsaturated soil with fully coupled flow-deformation analysis. IAMG publication Salzburg, Austria
Dawson, E. M., Roth, W. H. and Drescher, A. Slope stability analysis by strength reduction, s.l. : Géotechnique, 1999, Vol. 49(6), pp. 835-840.
Griffiths, D. and Lane, P. Slope stability analysis by finite elements. s.l. : Geotechnique, 1999. Vol. 49, 3, pp. 387-403.
PLAXIS. Delfit University of Technology & PLAXIS b.v. Plaxis version 8 Dynamic Manual. A.A. Balkema Publishers, 2002.
Azadmanesh, M. and Arafati, N. A Comparison on Slope Stability Analysis of Aydoghmoosh Earth Dam by limit equilibrium, finite element and finite difference methods. s.l. : IJCEBM, 2012I. pp. 115-124.
Khabbaz, H. F. and Behzad, N. C. Finite element methods against limit equilibrium approaches for slope stability analysis. s.l. : Geomechanical Society and New Zealand Geotechnical Society, 2012.
Lin, H. and Cao, P. Potential slip surfaces of slope with strength parameters. s.l. : Adv Mater Res, 2011. Vol. 243, pp. 3315-3318.
ASCE (American Society of Civil Engineers) (2018) Policy Statement 418 – the Role of the Civil Engineer in Sustainable Development. ASCE. https://www.asce.org/issues-and-advocacy/public-policy/policy-statement-418---the-role-of-the-civil-engineer-in-sustainabledevelopment/.
Shepheard, Casey J., et al. Analysis of design choices for a slope stability scenario in the humid tropics. ES1, s.l. : Engineering Sustainability, 2018, Vol. 171.
Harim, Noor Adilla, et al. s.l. Positivity preserving interpolation by using rational quartic spline. : AIMS Math, Vol. 5, 4, pp. 3762–3782. http://www.aimspress.com/journal/Math.
Hussain, Sardar Muhammad, et al. s.l. Generalized 5-point approximating subdivision scheme of varying arity: Mathematics, 2020, Vol. 8 ,4, 474. doi:https://doi.org/10.3390/math8040474.
Ashraf, Pakeeza, et al. Shape-preserving properties of a relaxed four-point interpolating subdivision scheme. s.l. : Mathematics , 2020, Vol. 8. 806. doi:https://doi.org/10.3390/math8050806, 5.
Ghaffar A, et al. A newclass of 2m-point binary non-stationary subdivision schemes. Adv Difference Equations. 2019;2019:325. https://doi.org/10.1186/s13662-019-2264-4.
Broms BB, Wong IH (1985) Stabilization of slopes with geofabric. Third International Geotechnical Seminar on Soil Improvement Methods, Singapore, pp 75–83