Study of the properties of a Si surface layer implanted with 64Zn+ and 16O+ ions during the formation of ZnO nanoparticles under thermal annealing

V. V. Privezentsev1, V. S. Kulikauskas2, V. V. Zatekin2, D. V. Petrov2, A. Yu. Trifonov3, A. A. Batrakov4
1Institute of Physics and Technology, Russian Academy of Sciences, Moscow, Russia
2Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State, Moscow, Russia
3Lukin Research Institute of Physical Problems, Zelenograd, Moscow, Russia
4National Research University MPEI, Moscow, Russia

Tóm tắt

The cross section of a Si surface layer implanted with 64Zn+ and 16O+ ions is visualized via high-resolution transmission electron microscopy, and its evolution as a result of thermal annealing is investigated. The profiles of impurities implanted into this layer, which are measured by means of secondary-ion mass spectrometry, as well as their changes arising from heat treatment, are analyzed. The surface morphology is examined with the help of atomic-force microscopy.

Tài liệu tham khảo

M. I. Baraton, Synthesis, Functionalization, and Surface Treatment of Nanoparticles (Am. Sci., Los-Angeles, 2002). A. S. Yanovskii and S. V. Tomilin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7, 140 (2013). C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, Appl. Phys. Lett. 90, 263501 (2007). C. Li, Y. Yang, X. W. Sun, et al., Nanotecnology 18, 135604 (2007). S. Chu, M. Olmedo, Zh. Yang, J. Kong, J. Liu, et al., Appl. Phys. Lett. 93, 181106 (2008). G. P. Smestad and M. Gratzel, J. Chem. Educat. 75, 752 (1998). I. Muntele, P. Thevenard, C. Muntele, B. Chhay, and D. Ila, Mater. Res. Symp. Proc. 829, B.2.21 (2005). H. Francois-Saint-Cyr, E. Anoshkina, F. Stevie, L. Chow, K. Richardson, and D. Zhou, J. Vac. Sci. Technol. B 19, 1769 (2001). M. Kalitzova, S. Simov, R. A. Yankov, et al., J. Appl. Phys. 81, 1143 (1997). C. Liu, H. Zhao, Y. Shen, G. Jia, J. Wang, and X. Mu, Nucl. Instrum. Methods Phys. Res. B 326, 23 (2011). V. V. Privezentsev, V. S. Kulikauskas, V. V. Zatekin, P. N. Chernykh, D. V. Petrov, A. V. Makunin, and K. D. Shcherbachev. J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., No. 4, 30 (2012) O. Eryu, R. Murakami, R. Takita, and K. Masuda, Nucl. Instrum. Methods Phys. Res. B 33, 665 (1988). G. Zollo, M. Kalitzova, D. Manno, and G. Vitali, J. Phys. D: Appl. Phys. 37, 2730 (2004). V. V. Privezentsev, V. S. Kulikauskas, V. V. Zatekin, D. V. Petrov, V. A. Bazhenov, and E. A. Shteinman, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 332 (2014). B. D. Cullity, Elements of X-ray Diffraction (Addison, Reading, MA, 1978), p. 102. A. Milnes, Deep Levels in Semiconductors (Wiley, New York, 1973), p. 38. The NIST X-ray Photoelectron Spectroscopy (XPS) Database. Version 4.1. http://srdata.nist.gov/xps J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985). www.srim.com/ W. A. Tiller, The Art and Science of Crowing Crystals, Ed. by J. J. Gilman (Wiley, New York, 1963). J. Bourgoin and M. Lannoo, Point Defects in Semiconductors II. Experimental Aspects (Springer, Berlin, Heidelberg, New York, 1983). Ion Implantation Science and Technology, Ed. by J. F. Ziegler (Ion Implantation Technology Co., New York, 2000).