Study of nonlocality effects in direct capture reactions with Lagrange-mesh R-matrix method

World Scientific Pub Co Pte Lt - Tập 30 Số 09 - 2021
Nguyen Hoang Phuc1,2,3, Nguyen Tri Toan Phuc1,2,3, Do Cong Cuong1,2,3
1Department of Nuclear Physics, Faculty of Physics and Engineering Physics, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Viet Nam
2Institute for Nuclear Science and Technology, VINATOM, 179 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
3Vietnam National University Ho Chi Minh City, Viet Nam

Tóm tắt

We apply the Lagrange-mesh [Formula: see text]-matrix method to calculate the [Formula: see text]-factor for the [Formula: see text]C[Formula: see text]N and [Formula: see text]O[Formula: see text]F direct radiative capture reactions. By comparing the astrophysical [Formula: see text]-factors calculated with nonlocal and local potentials, we investigate the nonlocality effects coming from the nuclear potentials in the direct capture reactions. Our calculations are in good agreement with the experimental data and indicate a nonnegligible difference in the results of local and nonlocal potentials. The use of small diffuseness narrow potentials also provides a remarkably good fit in the case with multiple broad resonances. Our findings suggest that the nonlocal potential improves the calculated results although the difference between the local and nonlocal potentials is smaller than uncertainties from other sources. We propose the nonlocality potential should be used in the potential model calculation of future astrophysics rates evaluation.

Từ khóa


Tài liệu tham khảo

Rolfs C. E., 1988, Cauldrons In the Cosmos: Nuclear Astrophysics

10.1016/j.ppnp.2016.04.001

Descouvemont P., 2020, Front. Astron. Space Sci., 7, 9, 10.3389/fspas.2020.00009

10.1088/0034-4885/73/3/036301

10.1103/PhysRevC.81.045805

Ducru P., 2021, Phys. Rev. C, 103, 064610, 10.1103/PhysRevC.103.064610

10.1016/j.ppnp.2012.10.003

10.1007/978-3-322-85255-7

10.1007/978-1-4615-2405-2_2

10.1016/0029-5582(61)91019-7

10.1016/j.adt.2010.06.004

10.1016/j.nuclphysa.2013.09.007

10.1142/S0218301316300095

Fraser P., 2008, Euro. Phys. J. A, 35, 69, 10.1140/epja/i2007-10524-1

10.1103/PhysRev.103.1353

Frahn W. E., 1957, Il Nuovo Cimento, 5, 1564, 10.1007/BF02856046

10.1016/0029-5582(62)90345-0

Jaghoub M. I., 2018, Phys. Rev. C, 98, 024609, 10.1103/PhysRevC.98.024609

10.1103/PhysRevLett.112.162503

10.1103/PhysRevC.79.021602

10.1103/PhysRevLett.110.112501

10.1103/PhysRevC.93.014604

Li W., 2018, Phys. Rev. C, 98, 044621, 10.1103/PhysRevC.98.044621

Galetti D., 1998, Phys. Rev. C, 58, 1627, 10.1103/PhysRevC.58.1627

Teruya N., 2016, Phys. Rev. C, 93, 024606, 10.1103/PhysRevC.93.024606

10.1103/PhysRevC.99.024308

10.1103/PhysRevC.50.2136

Bai D., 2021, Phys. Rev. C, 103, 014612, 10.1103/PhysRevC.103.014612

Tian Y., 2018, Phys. Rev. C, 97, 064615, 10.1103/PhysRevC.97.064615

Lugaro M., 2003, Astrophys. J., 586, 1305, 10.1086/367887

Genard G., 2010, J. Phys. Conf. Ser., 202, 012015, 10.1088/1742-6596/202/1/012015

10.1016/0375-9474(94)90154-6

10.1103/PhysRevC.51.1494

Chakraborty S., 2015, Phys. Rev. C, 91

Chakraborty S., 2019, Int. J. Mod. Phys. E, 28, 1950038, 10.1142/S0218301319500381

10.1016/0375-9474(73)90622-2

10.1103/PhysRevC.58.545

10.1103/PhysRevLett.79.3837

Descouvemont P., 2016, Comput. Phys. Commun., 200, 199, 10.1016/j.cpc.2015.10.015

10.1016/j.physrep.2014.11.006

10.1016/S0375-9474(02)01040-0

Loan D. T., 2018, Commun. Phys., 28, 323, 10.15625/0868-3166/28/4/12760

Anh N. L., 2021, Nucl. Phys. A, 1006, 122078, 10.1016/j.nuclphysa.2020.122078

Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 55

10.1103/PhysRevC.56.1302

10.1103/PhysRevC.63.024612

10.1103/RevModPhys.30.257

10.1016/0029-5582(87)90058-7

Robson B., 1969, Nucl. Phys. A, 132, 5, 10.1016/0375-9474(69)90608-3

Descouvemont P., 1999, Phys. Rev. C, 60, 015803, 10.1103/PhysRevC.60.015803

10.1103/PhysRevC.77.045802

10.1016/0375-9474(93)90073-7

Hester R. E., 1958, Phys. Rev., 111, 1604, 10.1103/PhysRev.111.1604

Tanner N., 1959, Phys. Rev., 114, 1060, 10.1103/PhysRev.114.1060

10.1103/PhysRevC.59.1149

Mukhamedzhanov A. M., 2010, Phys. Rev. C, 82, 051601, 10.1103/PhysRevC.82.051601

Bing G., 2007, Chin. Phys. Lett., 24, 2544, 10.1088/0256-307X/24/9/022

Artemov S. V., 2009, Bull. Russ. Acad. Ser. Fiz., 73, 165, 10.3103/S1062873809020075

10.1016/S0375-9474(99)00030-5

10.1103/RevModPhys.83.195

10.1016/0029-5582(60)90084-5

Li Y. J., 2012, Eur. Phys. J. A, 48, 13, 10.1140/epja/i2012-12013-x

Kabir A., 2020, Astrophys. Space Sci., 365, 105, 10.1007/s10509-020-03807-4

Mukhamedzhanov A. M., 2003, Nucl. Phys. A, 725, 279, 10.1016/S0375-9474(03)01618-X

10.1134/S1063778812020044

Przewoski B. V., 1990, Phys. Rev. Lett., 64, 368, 10.1103/PhysRevLett.64.368

10.1103/PhysRevC.32.1809

Mukhamedzhanov A. M., 2010, Phys. Rev. C, 81, 054314, 10.1103/PhysRevC.81.054314

Artemov S. V., 2008, Phys. At. Nucl., 71, 10.1134/S1063778808060045

Amos K., 2000, Advances in Nuclear Physics, 25

Hao T. V. N., 2015, Phys. Rev. C, 92, 014605, 10.1103/PhysRevC.92.014605

10.1103/PhysRevC.95.024315

Loan D. T., 2020, J. Phys. G, 47, 035106, 10.1088/1361-6471/ab5f54