Study of injection molded microcellular polyamide‐6 nanocomposites

Polymer Engineering and Science - Tập 44 Số 4 - Trang 673-686 - 2004
Mingjun Yuan1, Lih‐Sheng Turng1, Shaoqin Gong1, Daniel F. Caulfield2, Christopher G. Hunt2, Rick Spindler3
1Polymer Engineering Center, Department of Mechanical Engineering, University of Wisconsin‐Madison, Madison, WI 53706
2USDA Forest Products Laboratory, Madison, WI 53726.
3Kaysun Corporation, Manitowoc, WI 54221

Tóm tắt

AbstractThis study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection‐molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, Dynamic Mechanical Analysis (DMA), and Scanning Electron Microscope (SEM) analyses. Molding conditions and nano‐clays have been found to have profound effects on the cell structures and mechanical properties of polyamide‐6 (PA‐6) base resin and nanocomposite samples. The results show that microcellular nanocomposite samples exhibit smaller cell size and uniform cell distribution as well as higher tensile strength compared to the corresponding base PA‐6 microcellular samples. Among the molding parameters studied, shot size has the most significant effect on cell size, cell density, and tensile strength. Fractographic study reveals evidence of different modes of failure and different regions of fractured structure depending on the molding conditions. Polym. Eng. Sci. 44:673–686, 2004. © 2004 Society of Plastics Engineers.

Từ khóa


Tài liệu tham khảo

10.1557/JMR.1993.1179

10.1002/adma.19960080104

10.1021/ma9603488

10.1246/bcsj.70.2593

Gilman J. W., 1997, SAMPE J., 33, 40

10.1016/S0927-796X(00)00012-7

Kumar V., 1992, SPE ANTEC Tech. Papers, 38, 1508

Martini J. E., 1982, SPE ANTEC Tech. Papers, 28, 674

Baldwin D. F., 1992, SPE ANTEC Tech. Papers, 38, 1503

10.1177/073168449301200308

Shimo M., 1993, SPE ANTEC Tech. Papers, 39, 1844

Kumar V., 2002, SPE ANTEC Tech. Papers, 60, 1892

Cha S. W., 1992, SPE ANTEC Tech. Papers, 37, 1527

10.1002/pen.760302010

Park C. B., 1992, ASME, Cellular Polymers, 38, 69

Geol S. K., 1994, Polym. Eng. Sci., 34, 113

Baldwin D. F., 1992, ASME, Cellular Polymers, 38, 109

Park C. B., 1993, SPE ANTEC Tech Papers, 39, 1818

Baldwin D. F., 1992, ASME, Cellular Polymers, 38, 109

Han X., 2000, SPE ANTEC Tech. Papers, 46, 1857

10.1002/pen.10537

M.Shimbo K.Nishida T.Heraku K.Iijima T.Sekino andT.Terayama Foams '99 First International Conference on Thermoplastic Foam Parsippany New Jersey 132(1999).

M.Shimbo H.Kawashima andS.Yoshitani Foams '2000 Second International Conference on Thermoplastic Foam Parsippany New Jersey 162(2000).

Jacobsen Kai, 2000, SPE ANTEC Tech. Papers, 46, 1929

Xu J., 2001, J. Injection Molding Tech., 5, 152

10.1021/bk-1997-0669.ch007

Park C. B., 2000, Foam Extrusion, 263

10.1039/a906486i

Wang J., 2001, Gaofenzi Tongba, 6, 8

Michaeli W., 2002, Kunststoffe, 92, 48

10.1002/pen.10899

P.Svoboda C.Zeng H.Wang Y.Yang H.Li L. J.Lee andD.Tomasko 2002 NSF DMII Grantee and Research Conference San Juan Puerto Rico (January2002).

10.1002/pen.11083

Zeng C., 2002, SPE ANTEC Tech Papers, 60, 1504

Han X., 2002, SPE ANTEC Tech Papers, 60, 1915

10.1002/pc.10060

Peace G. S., 1993, Taguchi Method: A Hands‐on Approach

10.1002/pen.11018

10.1002/pen.11082

10.1002/pen.11081

10.1021/ma960550a

10.1016/S0169-1317(99)00017-4

M. J.Solomon A. S.Almusallam K. F.Seefeldt andP.Varadan 219th ACS National Meeting San Francisco (March2000).

10.1016/S0032-3861(00)00380-3

10.1021/ma000565f

10.1021/nl0100163

Macosko C. W., 1989, NATAS Proceedings, 18, 271