Study of a Pure-Ge/Si Short-Period Superlattice by X-Ray Double Crystal Diffraction

Journal of Materials Synthesis and Processing - Tập 7 - Trang 205-207 - 1999
Zhenguo Ji1, Huanming Lu1, Shiguo Zhang1, Duanlin Que1, N. Usami2, H. Sunamura2, Y. Shiraki2
1State Key Laboratory for Silicon Material, Zhejiang University, Hangzhou, China
2Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan

Tóm tắt

Pure-Ge/Si short-period superlattice (SPS) samples consisting of 1.5-monolayer Ge and a 1.4- to 3.8-nm-thick Si layer grown by gas source molecular beam epitaxy (GS-MBE) were studied by double-crystal x-ray diffraction. For SPS with a Si layer less than 2.4 nm, the satellite peak caused by the SPS structure in the rocking curve is quite broad, and no fine structure is found, indicating that there exists dislocation and waviness epilayers in the SPS. For SPS with a thick Si layer, the rocking curve is sharp and fine interference structures exist, indicating smooth epilayers in the SPS. It is found that both broad and sharp peaks exist but without fine structure in the rocking curves for SPS samples with a Si layer thickness (L Si) in the range of 2.1–2.9 nm, which is the range in which an abnormal photoluminescence band appears in photoluminescence spectra. This result strongly supports H. Sunamura's suggestion that the abnormal photoluminescence band is caused by waviness formation of the epilayer due to vertical correlation of thickness fluctuations by the local strain field.

Từ khóa


Tài liệu tham khảo

R. A. Soref, Proc. IEEE 81(12), 1685 (1993).

P. Ayliffe, J. Parker, S. Bertolini, T. Clapp, M. Geear, P. Harrison, and R. Peall, Int. J. Optoelectron. 9(2), 179–191 (1994).

B. P. van Drieenhuizen and R. F. Wolffenbuttel, Sensor Actuator A31, 229–240 (1992).

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, Appl. Phys. Lett. 62(10), 1038 (1093).

A. E. Bieber and T. G. Brown, Appl. Phys. Lett. 71(7), 861 (1997).

Y. L. Liu, E. K. Liu, G. Z. Li, S. L. Zhang, and J. S. Luo, Appl. Phys. Lett. 64(16), 2079 (1994).

R. T. Collins, P. M. Fauchet, and M. A. Tischler, Phys. Today 50(1), 24 (1997).

A. Kasuya and M. Suezawa, Appl. Phys. Lett. 71(19), 2728 (1997).

G. Maiello, M. Balucani, V. Bondarenko, G. De Cesare, S. La Monica, G. Masini, and A. Ferrari, Diffus. Defect Data B Solid State Phenom. 54, 45 (1997).

M. Mereno, C. Dominguez, J. Munoz, J. Calderer, and J. R. Morante, Sensors Actuators A62(1–3), 524 (1997).

Y. M. Liu and P. R. Prucnal, Electron. Lett. 28(15), 1434 (1992).

T. P. Pearsall, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. B9(1–3), 225 (1991).

S. Fukatsu, D. K. Nayak, and Y. Shiraki, Appl. Phys. Lett. 65(24), 3039 (1994).

A. S. Richard, Proc. IEEE 81(12), 1687 (1993).

H. Presting, H. Kibbel, R. M. Jaros, U. Turton, G. A. Mencezigar, and H. G. Grimmeiss, Semicond. Sci. Technol. 7, 1127 (1992).

S. M. Cho and H. H. Lee, J. Appl. Phys. 73, 1918 (1993).

T. P. Persall, Phys. Rev. Lett. 63(19), 2104 (1989).

K. Nakagawa and M. Miyao, J. Appl. Phys. 69(5), 3058 (1991).

H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, Appl. Phys. Lett. 66(22), 3024 (1995).

H. Sunamura, A Luminescence Study on Stress-Driven Growth Transition and Formation of Quantum Nanostructures in Indirect-Gap Strained Si/Ge, Doctoral dissertation (University of Tokyo, Tokyo, Feb. 10, 1997).

Z. G. Ji, N. Usami, H. Sunamura, and Y. Shiraki, Semiconduct. Photon. Technol. 4(2), 90 (1998).