Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự tham gia của học sinh với các đồ thị theo thời gian thực trong các thiết lập CSCL: phân tích vai trò của hỗ trợ từ giáo viên
Tóm tắt
Bài báo này báo cáo về một nghiên cứu về hỗ trợ từ giáo viên trong các thiết lập học tập hợp tác hỗ trợ bằng máy tính (CSCL) nơi học sinh tương tác với các đồ thị trong các phòng thí nghiệm thời gian thực trong bối cảnh khoa học trường học. Các phòng thí nghiệm thời gian thực là những thiết bị kỹ thuật số và phần mềm được kết nối với các cảm biến hoặc đầu dò do học sinh kiểm soát, có khả năng đo lường và trực quan hóa dữ liệu một cách đồ họa. Bối cảnh thực nghiệm là một dự án khoa học về sự axit hóa đại dương (OA) nơi học sinh cấp trung học cơ sở thực hiện các phép đo giá trị pH của nước với các nồng độ CO2 tăng lên. Trọng tâm phân tích là sự tương tác giữa học sinh và giáo viên trong các hoạt động nhóm, nơi học sinh thực hiện, xem xét và báo cáo về thí nghiệm phòng thí nghiệm thời gian thực. Các phân tích cho thấy học sinh cần thêm sự hỗ trợ từ giáo viên trong việc giải thích các đồ thị theo thời gian thực và trong việc kết nối giữa biểu diễn đồ họa, các hoạt động thực tiễn của thí nghiệm và các hiện tượng khoa học cơ bản. Quan trọng nhất, nghiên cứu cho thấy sự phức tạp của hỗ trợ từ giáo viên trong các thiết lập CSCL và cách mà loại hỗ trợ này giao thoa với hỗ trợ từ các nguồn lực kỹ thuật số, sự hợp tác giữa các đồng đẳng và thiết kế giảng dạy áp dụng.
Từ khóa
#học tập hợp tác #hỗ trợ của giáo viên #đồ thị thời gian thực #axit hóa đại dương #giáo dục khoa họcTài liệu tham khảo
Adams, D. D., & Shrum, J. W. (1990). The effects of microcomputer-based laboratory exercises on the acquisition of line graph construction and interpretation skills by high school biology students. Journal of Research in Science Teaching, 27(8), 777–787.
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198.
Ares, N., Stroup, W. M., & Schademan, A. R. (2009). The power of mediating artifacts in group-level development of mathematical discourses. Cognition and Instruction, 27(1), 1–24.
Arnseth, H. C., & Krange, I. (2016). What happens when you push the button? Analyzing the functional dynamics of concept development in computer supported science inquiry. International Journal of Computer-Supported Collaborative Learning, 11(4), 479–502.
Bezemer, J., & Kress, G. (2008). Writing in multimodal texts - A social semiotic account of designs for learning. Written Communication, 25(2), 166–195.
Derry, S. J., Pea, R. D., Barron, B., Engle, R. A., Erickson, F., Goldman, R., et al. (2010). Conducting video research in the learning sciences: Guidance on selection, analysis, technology, and ethics. Journal of the Learning Sciences, 19(1), 3–53.
Dillenbourg, P. (2013). Design for classroom orchestration. Computers & Education, 69, 485–492.
Erkens, M., Bodemer, D., & Hoppe, H. U. (2016). Improving collaborative learning in the classroom: Text mining based grouping and representing. International Journal of Computer-Supported Collaborative Learning, 11(4), 387–415.
Friedler, Y., & McFarlane, A. E. (1997). Data logging with portable computers, a study of the impact on graphing skills in secondary pupils. Journal of Computers in Mathematics and Science Teaching, 16(4), 527–550.
Furberg, A. (2016). Teacher support in computer-supported lab work: Bridging the gap between lab experiments and students’ conceptual understanding. International Journal of Computer-Supported Collaborative Learning, 11(1), 89–113.
Furberg, A., Kluge, A., & Ludvigsen, S. (2013). Student sensemaking with science diagrams in a computer-based setting. International Journal of Computer-Supported Collaborative Learning, 8(1), 41–64.
Gillen, J., Littleton, K., Twiner, A., Staarman, J. K., & Mercer, N. (2008). Using the interactive whiteboard to resource continuity and support multimodal teaching in a primary science classroom. Journal of Computer Assisted Learning, 24(4), 348–358.
Glazer, N. (2011). Challenges with graph interpretation: A review of the literature. Studies in Science Education, 47(2), 183–210.
Greiffenhagen, C. (2012). Making rounds: The routine work of teacher during collaborative learning with computers. International Journal of Computer-Supported Collaborative Learning, 7(1), 11–42.
Ivarsson, J., Linderoth, J., & Säljö, R. (2009). Representations in practices: A socio-cultural approach to multimodality in reasoning. In J. Carey (Ed.), The Routledge handbook of multimodal analysis (pp. 201–212). London: Routledge.
Järvelä, S., Kirschner, P. A., Hadwin, A., Järvenoja, H., Malmberg, J., Miller, M., & Laru, J. (2016). Socially shared regulation of learning in CSCL: Understanding and prompting individual- and group-level shared regulatory activities. International Journal of Computer-Supported Collaborative Learning, 11(3), 263–280.
Jefferson, G. (1984). Transcription notation. In J. Atkinson & J. Heritage (Eds.), Structures of social interaction (pp. ix–xvi). New York: Cambridge University Press.
Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The Journal of the Learning Sciences, 4(1), 39–103.
Jornet, A., & Roth, W. M. (2015). The joint work of connecting multiple (re)presentations in science classrooms. Science Education, 99(2), 378–403.
Kelly, G. J., & Crawford, T. (1997). An ethnographic investigation of the discourse processes of school science. Science Education, 81(5), 533–559.
Knain, E. (2015). Scientific literacy for participation - A systemic functional approach to analysis of school science discourses. Rotterdam: Sense Publishers.
Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1–64.
Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. R. Martin & R. Veel (Eds.), Reading science (pp. 87–113). London: Routledge.
Lindwall, O., & Ivarsson, J. (2011). Difference that make a difference: Contrasting the local enactment of two technologies in a kinematics lab. In S. Ludvigsen, A. Lund, I. Rasmussen, & R. Säljö (Eds.), Learning across sites: New tools, infrastructures and practices (pp. 364–380). London: Routledge.
Lindwall, O., & Lymer, G. (2008). The dark matter of lab work: Illuminating the negotiation of disciplined perception in mechanics. Journal of the Learning Sciences, 17, 180–224.
Linell, P. (1998). Approaching dialogue: Talk, interaction and contexts in dialogical perspective. Amsterdam: John Benjamins.
Linell, P. (2009). Rethinking language, mind and world dialogically: Interactional and contextual theories of human sense-making. Charlotte: Information Age Publishing.
Linn, M. C., & Eylon, B.-S. (2011). Science Learning and instruction: Taking advantage of technology to promote knowledge integration. New York: Routledge.
Linn, M. C., Layman, J. W., & Nachmias, R. (1987). Cognitive consequences of microcomputer-based laboratories: Graphing skills development. Contemporary Educational Psychology, 12(3), 244–253.
Ludvigsen, S. (2016). CSCL towards the future: The second decade of ijCSCL. International Journal of Computer-Supported Collaborative Learning, 11(1), 1–7.
Ludvigsen, S., & Arnseth, H. C. (2017). Computer-supported collaborative learning. In E. Duval, M. Sharples, & R. Sutherland (Eds.), Technology enhanced learning (pp. 47–58). Chicago: Springer International Publishing.
Mäkitalo-Siegl, K., Kohnle, C., & Fischer, F. (2011). Computer-supported collaborative inquiry learning and classroom scripts: Effects on help seeking processes and learning outcomes. Learning and Instruction, 21(2), 257–266.
Mercer, N. (2004). Sociocultural discourse analysis: Analyzing classroom talk as a social mode of thinking. Journal of Applied Linguistics, 1(2), 137–168.
Mercer, N., & Littleton, K. (2007). Dialogue and the development of children's thinking: A sociocultural approach. London: Routledge.
Mitnik, R., Recabarren, M., Nussbaum, M., & Soto, A. (2009). Collaborative robotic instruction: A graph teaching experience. Computers & Education, 53(2), 330–342.
Mokros, J. R., & Tinker, R. F. (1987). The impact of microcomputer-based labs on children’s ability to interpret graphs. Journal of Research in Science Teaching, 24(4), 369–383.
Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms. Philadelphia: Open University Press.
Nakhleh, M. B. (1994). A review of microcomputer-based labs: How have they affected science learning? Journal of Computers in Mathematics and Science Teaching, 13(4), 368–381.
Nemirovsky, R., Tierney, T., & Wright, T. (1998). Body motion and graphing. Cognition and Instruction, 16(2), 119–172.
Nicolaou, C. T., Nicolaidou, I., Zacharia, Z., & Constantinou, C. P. (2007). Enhancing fourth graders’ ability to interpret graphical representations through the use of microcomputer-based labs implemented within an inquiry-based activity sequence. Journal of Computers in Mathematics and Science Teaching, 26(1), 75–99.
Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. Journal of the Learning Sciences, 13(3), 423–451.
Roth, W.-M. (1996). Where is the context in contextual word problems? Mathematical practices and production grade 8 students’ answers to story problems. Cognition and Instruction, 14(4), 487–527.
Roth, W.-M., & McGinn, M. K. (1997). Graphing: Cognitive ability or practice? Science Education, 81(1), 91–106.
Roth, W.-M., & McGinn, M. K. (1998). Inscriptions: Toward a theory of representing as social practice. Review of Educational Research, 68(1), 35–59.
Roth, W. M., & Tobin, K. (1997). Cascades of inscriptions and the re-presentation of nature: How numbers, tables, graphs, and money come to re-present a rolling ball. International Journal of Science Education, 19(9), 1075–1091.
Säljö, R. (2010). Digital tools and challenges to institutional traditions of learning: Technologies, social memory and the performative nature of learning. Journal of Computer Assisted Learning, 26, 53–64.
Säljö, R., & Bergqvist, K. (1997). Seeing the light: Discourse and practice in the optics lab. In L. B. Resnick, R. Säljö, C. Pontecorvo, & B. Burge (Eds.), Discourse, tools and reasoning: Essays on situated cognition (pp. 385–405). Berlin: Springer Berlin Heidelberg.
Schwarz, B. B., Prusak, N., Swidan, O., Livny, A., Gal, K., & Segal, A. (2018). Orchestrating the emergence of conceptual learning: A case study in a geometry class. International Journal of Computer-Supported Collaborative Learning. https://doi.org/10.1007/s11412-018-9276-z.
Strømme, T. A., & Furberg, A. (2015). Exploring teacher intervention in the intersection of digital resources, peer collaboration, and instructional design. Science Education, 99(5), 837–862.
Testa, I., Monroy, G., & Sassi, E. (2002). Students’ reading images in kinematics: The case of real-time graphs. International Journal of Science Education, 24(3), 235–256.
Tytler, R., Prain, V., Hubber, P., & Waldrip, B. E. (2013). Constructing representations to learn in science. In Rotterdam. Netherlands: Sense Publishers.
Urhahne, D., Schanze, S., Bell, T., Mansfield, A., & Holmes, J. (2010). Role of the teacher in computer-supported collaborative inquiry learning. International Journal of Science Education, 32(2), 221–243.
van Joolingen, W. R., de Jong, T., & Dimitrakopoulou, A. (2007). Issues in computer supported inquiry learning in science. Journal of Computer Assisted Learning, 23(2), 111–119.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge: Harvard University Press.
Vygotsky, L. S. (1986). Thought and language. Cambridge: MIT Press.
Warwick, P., Mercer, N., & Kershner, R. (2013). “Wait, let’s just think about this”: Using the interactive whiteboard and talk rules to scaffold learning for co-regulation in collaborative science activities. Learning, Culture and Social Interaction, 2(1), 42–51.
Wells, G. (1999). Dialogic inquiry. Towards a sociocultural practice and theory of education. Cambridge: Cambridge University Press.
Wertsch, J. V. (1998). Mind as action. New York: Oxford University Press.
White, T. (2018). Connecting levels of activity with classroom network technology. International Journal of Computer-Supported Collaborative Learning, 13(1), 93–122.
White, T., & Pea, R. (2011). Distributed by design: On the promises and pitfalls of collaborative learning with multiple representations. Journal of the Learning Sciences, 20(3), 489–547.
Wu, H.-K., & Krajcik, J. S. (2006). Inscriptional Practices in Two Inquiry-Based Classrooms: A Case Study of Seventh Graders' Use of Data Tables and Graphs. Journal of Research in Science Teaching, 43(1), 63–95.