Sự Ứng Dụng Mối Quan Hệ Diện Tích Bề Mặt Tới Thể Tích Của Học Sinh Và Giáo Viên

Amy R. Taylor1, M. Gail Jones2
1Department of Elementary, Middle, and Literacy, Watson School of Education, UNCW, Wilmington, USA
2MSTE Dept, NCSU, Raleigh, USA

Tóm tắt

Các tiêu chuẩn giáo dục khoa học quốc gia nhấn mạnh việc giảng dạy các khái niệm và quy trình thống nhất như các chức năng cơ bản của sinh vật sống, môi trường sống và tỷ lệ (NRC 2011). Tỷ lệ bao gồm việc hiểu rằng các đặc điểm, thuộc tính hoặc mối quan hệ khác nhau trong một hệ thống có thể thay đổi khi kích thước của nó tăng lên hoặc giảm đi (NRC 2011). Một trong những mối quan hệ như vậy liên quan đến tỷ lệ diện tích bề mặt với thể tích, một khái niệm phổ biến có thể được tìm thấy trong các lĩnh vực khoa học khác nhau. Khái niệm này rất quan trọng để học sinh không chỉ hiểu được mối liên hệ giữa hai yếu tố, mà còn có khả năng áp dụng mối quan hệ này trong các ngữ cảnh khoa học khác nhau. Mục đích của nghiên cứu này là điều tra các yếu tố ảnh hưởng đến việc hiểu các mối quan hệ giữa diện tích bề mặt và thể tích. Nghiên cứu này đã xem xét kỹ năng tư duy logic (bao gồm lý luận tỷ lệ), kỹ năng thị giác - không gian, và mức độ hiểu biết về các mối quan hệ giữa diện tích bề mặt và thể tích của học sinh trung học cơ sở, học sinh trung học phổ thông và giáo viên khoa học. Kết quả hồi quy cho thấy khả năng lý luận của các tham gia viên và các thành phần của kỹ năng thị giác - không gian có thể là những yếu tố dự đoán khả năng hiểu mối quan hệ giữa diện tích bề mặt và thể tích. Các hàm ý cho việc giảng dạy các khái niệm tỷ lệ như mối quan hệ giữa diện tích bề mặt và thể tích trong lớp học khoa học sẽ được thảo luận.

Từ khóa

#giáo dục khoa học #diện tích bề mặt #thể tích #tư duy logic #giáo viên khoa học

Tài liệu tham khảo

Adey, P., & Shayer, M. (1990). Accelerating the development of formal thinking in the middle and high school students. Journal of Research in Science Teaching, 27, 267–285. American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press. Battista, M., & Clements, D. (1996). Students understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 27, 258–292. Beckmann, C., Thompson, D., & Austin, R. (2004). Exploring proportional reasoning through movies and literature. Mathematics Teaching in the Middle School, 9(5), 256–262. Bilbo, T., & Milkent, M. (1978). A comparison of two different approaches for teaching volume units of the metric system. Journal of Research in Science Teaching, 15, 53–57. Bybee, W., & Sund, B. (1990). Piaget for educators (2nd ed.). Illinois: Waveland Press. Cepni, S., Ozsevgec, T., & Cerrah, L. (2004). Turkish middle school students’ cognitive development levels in science. Asia-Pacific Forum on Science Learning and Teaching, 5, 1. Chavez, O., Reys, R., & Jones, D. (2005). Spatial visualization: what happens when you turn it? Mathematics Teaching in the Middle School, 11(4), 190–196. Clark, F. B., & Kamii, C. (1996). Identification of multiplicative thinking in children in grades 1–5. Journal for Research in Mathematics Education, 27(1), 41–51. Dean, A., & Frankhouser, J. (1988). Way-stations in the development of children’s proportionality concepts: the stage issue revisited. Journal of Experimental Child Psychology, 46, 129–149. Dori, Y., & Barak, M. (2001). Virtual and physical molecular modeling: fostering model perception and spatial understanding. Educational Technology and Society, 4(1), 61–74. Ekstrom, R., French, J., Harman, H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton: Educational Testing Services. Eliot, J. (1987). Models of psychological space: psychometric, developmental, and experimental approaches. New York: Springer. Ferk, V., Vrtacnik, M., Blejec, A., & Gril, A. (2003). Students’ understanding of molecular structure representations. International Journal of Science Education, 25(10), 1227–1245. Feldman, J. (2003). What is a visual object? Trends in Cognitive Science, 7, 252–256. Gabel, D., & Enochs, L. (1987). Different approaches for teaching volume and students’ visualization ability. Science Education, 71(4), 591–597. Gall, Gall, & Borg. (2003). Educational research. Boston: Pearson Education. George, D., & Mallery, P. (2009). SPSS for windows step by step: A simple study guide and reference. Boston: Pearson Education. Guyton, A., & Hall, J. (2006). Textbook of medical physiology. Philadelphia: Elsevier Inc. Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking. New York: Cambridge University Press. Hegarty, M., Montello, D., Richardson, A., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34, 151–176. Hood, E. (2004). Nanotechnology: looking as we leap. Environmental Health Perspectives, 112(13), 740–750. Hooker, S. (2002). Nanotechnology Advantages Applied to Gas Sensor Development. The Nanoparticles 2002 Conference Proceedings, Business Communications Co., Inc., Norwalk, CT, USA. Hwang, B. (1994). A study of proportional reasoning and self-regulation instruction on students’ conceptual change in conceptions of solution. Paper presented at the National Association of Research in Science Teaching, Anaheim, CA. Jones, G., & Taylor, A. (2009). Developing a sense of scale: looking backward. Journal of Research in Science Teaching, 46(4), 460–475. Jones, M., Tretter, T., Taylor, A., & Oppewal, T. (2008). Experienced and novice teachers’ concepts of spatial scale. International Journal of Science Education, 30(3), 409–429. Kozhevnikov, M., & Thornton, R. (2006). Real-time data display, spatial visualization ability, and learning force and motion concepts. Journal of Science Education and Technology, 15(1), 111–132. Kwon, Y., Lawson, A., Chung, W., & Kim, Y. (2000). Effect on development of PR skill of physical experience and cognitive abilities associated with prefrontal lobe activity. Journal of Research in Science Teaching, 37(10), 1171–2000. Lamon, S. (1993). Ratio and proportion: connecting content and children’s thinking. Journal for Research in Mathematics Education, 24(1), 41–61. Leek, Reppa, & Arguin. (2005). Surface but not volumetric part structure mediates three-dimensional shape representation. Quarterly Journal of Experimental Psychology. Lesh, R., Post, T., & Behr, M. (1988). Proportional Reasoning. In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the middle grades (pp. 93–118). Reston: National Council of Teachers of Mathematics. Llewellyn, D. (2009). Thinking spatially: taking observation, classification, and communication skills to a higher level of reasoning. Science Scope, 32(6), 69–71. Ma, Z., Kotaki, M., Inai, R., & Ramakrishna, S. (2005). Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Engineering, 11(1–2), 101–109. Mathewson, J. (1999). Visual-spatial thinking: an aspect of science overlooked by educators. Science Education, 83(1), 33–54. McCormack, A. (2011). Don’t verbalize, visualize! NSTA Reports, 22(7), 10–11. McGowan, C. (1994). Diatoms to dinosaurs. Washington: Island Press. Moraru, C., Panchapakesan, C., Huang, Q., Takhistov, P., Liu, S., & Kokini, J. (2003). Nanotechnology: a new frontier in food science. Food Technology, 57(12), 24–29. National Research Council. (2011). A framework for K-12 science education. Washington: National Academy Press. Newton, R., & Tobin, K. (1981). Patterns of reasoning. Research in Science Education, 12(1), 42–49. North Carolina Department of Public Instruction (2004). Science standard course of study and grade level competencies. Retrieved October 12, 2007 from http://www.ncpublicschools.org/curriculum/science/scos/. Paivio, A. (2007). Mind and its evolution: A dual coding theoretical approach. New Jersey: Lawrence Erlbaum Associates, Inc. Pallrand, G., & Seeber, F. (1984). Spatial ability and achievement in introductory physics. Journal of Research in Science Teaching, 21(5), 507–516. Piaget, J. & Inhelder, B. (1967). The child’s conception of space. (F.J. Langdon & J. L. Lunzar, Trans.). London: Routledge & Kegan Paul. Pinard, A., & Chassé, G. (1977). Psuedoconservation of the volume and surface area of a solid object. Child Development, 48, 1559–1566. Schattenburg, M., & Smith, H. (2001). The critical role of metrology in nanotechnology. Proceedings of the SPIE Workshop on Nanostructure Science, Metrology, and Technology, 4608. Shamesh, M., Eckstein, S., & Lazarowitz, R. (1992). An experimental study of the development of formal reasoning among secondary school students. School Science and Mathematics, 92, 26–30. Siegler, R. S. (1998). Children’s thinking. Upper Saddle River: Prentice-Hall. Stevens, S., Sutherland, L., & Krakcik, J. (2009). The big ideas of nanoscale science and engineering. Arlington: NSTA press. Taylor, A., & Jones, M. G. (2009). Proportional reasoning ability and concepts of scale: surface area to volume relationships in science. International Journal of Science Education, 31(9), 1231–1247. Tobin, K., & Capie, W. (1980). The development and validation of a group test of logical thinking. Paper presented at the American Educational Research Association in Boston, MA. Tourniare, F., & Pulos, S. (1985). Proportional reasoning: a review of the literature. Educational Studies in Mathematics, 16, 181–204. Tretter, T., Jones, M. G., & Minogue, J. (2006a). Navigating across spatial scales in science. Paper presented at the National Association of Research in Science Teaching, San Francisco, CA. Tretter, T., Jones, G., Andre, T., Negishi, A., & Minogue, J. (2006). Conceptual boundaries and distances: students’ and experts’ concepts of the scale of scientific phenomena. Journal of Research in Science Teaching, 43(3), 282–319. Twidle, J. (2006). Is the concept of conservation of volume in solids really more difficult than for liquids, or is the way we test giving us an unfair comparison. Educational Researcher, 48(1), 93–109. Westbrook, S., & Marek, E. (1991). A cross-age study of student understanding of the concept of diffusion. Journal of Research in Science Teaching, 28, 649–660. Westbrook, S., & Marek, E. (1992). A cross-age of student understanding of the concept of homeostasis. Journal of Research in Science Teaching, 29, 51–61.