Hiểu Biết Của Sinh Viên Về Vòng Lặp và Vòng Lặp Lồng Nhau Trong Lập Trình Máy Tính: Quan Điểm Lý Thuyết APOS

Ibrahim Cetin1
1Faculty of Education, Abant Izzet Baysal University, Bolu, Turkey

Tóm tắt

Mục đích của nghiên cứu này là khám phá sự hiểu biết của sinh viên về các khái niệm vòng lặp và vòng lặp lồng nhau. Sáu mươi ba sinh viên ngành kỹ thuật cơ khí tham gia một khóa học lập trình cơ bản đã tham gia vào nghiên cứu này. Lý thuyết APOS (Hành động, Quá trình, Đối tượng, Sơ đồ) là một lý thuyết kiến tạo được phát triển ban đầu cho giáo dục toán học. Nghiên cứu này là nỗ lực đầu tiên để áp dụng khung lý thuyết APOS trong bối cảnh giáo dục lập trình. Kết quả cho thấy lý thuyết APOS là một khung hữu ích để xem xét sự hiểu biết của sinh viên kỹ thuật liên quan đến các vòng lặp và vòng lặp lồng nhau. Kết quả của nghiên cứu này có những tác động cụ thể đối với các nhà nghiên cứu và thực hành khi thiết kế chương trình giảng dạy lập trình.

Từ khóa

#lập trình #lý thuyết APOS #vòng lặp #vòng lặp lồng nhau #giáo dục kỹ thuật

Tài liệu tham khảo

Asiala, M., Brown, A., Devries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. In J. Kaput, A. H. Schoenfeld, & E. Dubinsky (Eds.), Research in collegiate mathematics education II (pp. 1–32). Providence, RI: American Mathematical Society. Asiala, M., Cottrill, J., Dubinsky, E., & Schingendorf, K. E. (1997). The developmentof students’ graphical understanding of the derivative. Journal of Mathematical Behavior, 16(4), 399–431. Beth, E. W., & Piaget, J. (1966). Mathematical epistemology and psychology. Dordrecht, The Netherlands: Reidel. Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247–285. Buyukozturk, S., Cokluk, O., & Koklu, N. (2013). Statistics for the behavioral sciences. Ankara, Turkey: Pegem Academy. Cetin, I. (2009). Students’ understanding of limit concept: An APOS perspective (Unpublished doctoral dissertation). Middle East Technical University, Turkey. Cetin, I. (2013). Visualization: A tool for enhancing students’ concept images of basic object-oriented concepts. Computer Science Education, 23(1), 1–23. Christensen, K., Rundus, D., Fujinoki, H., & Davis, D. (2002). A crash course for preparing students for a first course in computing: Did it work? Journal of Engineering Education, 91(4), 409–413. Corritore, C. L., & Wiedenbeck, S. (1991). What do novices learn during program comprehension? International Journal of Human-Computer Interaction, 3(2), 199–222. Cottrill, J., Dubinsky, E., Nichols, D., Schwinngendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process schema. Journal of Mathematical Behavior, 15, 167–192. Creswell, J. W., & Clark, V. L. P. (2007). Designing and conducting mixed methods research. Thousand Oaks, CA: Sage Publications. Davies, S. P. (1993). Models and theories of programming strategy. International Journal of Man-Machine Studies, 39(2), 237–267. Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 95–126). Boston, MA: Kluwer. Dubinsky, E. (1993). Computers in teaching and learning discrete mathematics and abstract algebra. In D. L. Ferguson (Ed.), Advanced educational technologies for mathematics and science (pp. 525–583). New York, NY: Springer-Verlag. Dubinsky, E. (1997). On learning quantification. Journal of Computers in Mathematics and Science Teaching, 16(2), 335–362. Dubinsky, E., Elterman, F., & Gong, C. (1988). The students’ construction of quantification. For the Learning of Mathematics, 8(2), 44–67. Dubinsky, E., & Lewin, P. (1986). Reflective abstraction and mathematics education: The genetic decomposition of induction and compactness. Journal of Mathematical Behavior, 5(1), 55–92. Dubinsky, E., Weller, K., Mcdonald, M., & Brown, A. (2005). Some historical issues and paradoxes regarding the concept of infinity: An APOS analysis: Part 2. Educational Studies in Mathematics, 60(2), 253–266. Dubinsky, E., Weller, K., Stenger, C., & Vidakovic, D. (2008). Infinite iterative process: The tennis ball problem. European Journal of Pure and Applied Mathematics, 1(1), 99–121. Dubinsky, E., & Yiparaki, O. (2000). On student understanding of AE and EA quantification. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in collegiate mathematics education IV (pp. 239–289). Providence, RI: American Mathematical Society. DuBoulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing Research, 2(1), 57–73. Ebrahimi, A. (1994). Novice programmer errors: Language constructs and plan composition. International Journal of Human-Computer Studies, 41(4), 457–480. Eckerdal, A., Ratcliffe, M., McCartney, R., Sanders, K., Moström, J. E., & Zander, C. (2006). Threshold concepts into context in computer science education. ACM SIGCSE Bulletin, 38(3), 103–107. El-Zein, A., Langrish, T., & Balaam, N. (2009). Blended teaching and learning of computer programming skills in engineering curricula. Advances in Engineering Education, 1(3), 1–18. Fix, V., Wiedenbeck, S., & Scholtz, J. (1993). Characteristics of the mental representations of novice and expert programmers: An empirical study. International Journal of Man-Machine Studies, 39(5), 793–812. Ginat, D. (2004). On novice loop boundaries and range conceptions. Computer Science Education, 14(3), 165–181. Hazzan, O. (2003). How students attempt to reduce abstraction in the learning of mathematics and in the learning of computer science. Computer Science Education, 13(2), 95–123. Guindon, R. (1990). Knowledge exploited by experts during software systems design. International Journal of Man-Machine Studies, 33(3), 279–182. Hazzan, O. (2003). How students attempt to reduce abstraction in the learning of mathematics and in the learning of computer science. Computer Science Education, 13(2), 95–123. Hodge, B. K., & Steele, W. G. (2002). A survey of computational paradigms in undergraduate mechanical engineering education. Journal of Engineering Education, 91(4), 415–417. Kahney, H. (1989). What do novice programmers know about recursion? In E. Soloway & J. C. Sphorer (Eds.), Studying the novice programmer (pp. 209–228). Hillsdale, NJ: Lawrence Erlbaum Associates. Katai, Z. (2011). Multi-sensory method for teaching-learning recursion. Computer Applications in Engineering Education, 19(2), 324–243. Meyer, J. H., F., & Land, R. (2003). Threshold concepts and troublesome knowledge: Linkages to ways of thinking and practising. In C. Rust (Ed.), Improving student learning—Theory and practice ten years on (pp. 412–424). Oxford, England: Oxford Centre for Staff and Learning Development (OCSLD). Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: A sourcebook of new methods (2nd ed.). Thousand Oaks, CA: Sage. Milne, I., & Rowe, G. (2002). Difficulties in learning and teaching programming—Views of students and tutors. Education and Information Technologies, 7(1), 55–66. Pea, R. D. (1986). Language-independent conceptual “bugs” in novice programming. Journal of Educational Computing Research, 2(1), 25–36. Putnam, T. R., Sleeman, D., Baxter, J. A., & Kuspa, L. K. (1986). A summary of misconceptions of high school BASIC programmers. Journal of Educational Computing Research, 2(4), 459–472. Rogalski, J., & Samurcay, R. (1990). Acquisition of programming knowledge and skills. In J. M. Hoc, T. R. G. Green, R. Samurçay, & D. J. Gillmore (Eds.), Psychology of programming (pp. 157–174). London, England: Academic Press. Samurcay, R. (1989). The concept of variable in programming: Its meaning and use in problem solving by novice programmers. In E. Soloway & J. C. Sphorer (Eds), Studying the novice programmer (pp. 161–178). Hillsdale, NJ: Lawrence Erlbaum Associates. Sleeman, D., Putnam, R. T., Baxter, J., & Kuspa, L. (1986). Pascal and high-school students: A study of misconceptions. Journal of Educational Computing Research, 2(1), 5–23. Soloway, E., Bonar, J., & Ehrlich, K. (1983). Cognitive strategies and looping constructs: An empirical study. Communications of the ACM, 26(11), 853–860. Teddlie, C., & Tashakkori, A. (2003). Major issues and controversies in the use of mixed methods in the social and behavioral sciences. In A. Tashakkori & C. Teddlie (Eds.), Handbook of mixed methods in social and behavioral research (pp. 3–50). Thousand Oaks, CA: Sage. Vessey, I. (1985). Expertise in debugging computer programs: A process analysis. International Journal of Man-Machine Studies, 23, 459–494. Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. (1999). A comparison of the comprehension of object-oriented and procedural programs by novice programmers. Interacting With Computers, 11(3), 255–282. Winslow, L. E. (1996). Programming pedagogy—A psychological overview. SIGCSE Bulletin, 28(3), 17–22. Yin, R. K. (2003). Case study research: Design and methods (3nd ed.). Thousand Oaks, CA: Sage Publications. Zendler, A., Spannagel, C., & Klaudt, D. (2011). Marrying content and process in computer science education. IEEE Transactions on Computing Education, 54(3), 387–397.