Structure of Linkage Disequilibrium in Plants

Annual Review of Plant Biology - Tập 54 Số 1 - Trang 357-374 - 2003
Sherry Flint‐Garcia1, Jeffry M. Thornsberry2, Edward S. Buckler2
1Department of Genetics, North Carolina State University, Raleigh, North Carolina, 27695, USA
2USDA-ARS, Plant Science Research Unit, Raleigh, North Carolina 27695; Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695;,

Tóm tắt

Future advances in plant genomics will make it possible to scan a genome for polymorphisms associated with qualitative and quantitative traits. Before this potential can be realized, we must understand the nature of linkage disequilibrium (LD) within a genome. LD, the nonrandom association of alleles at different loci, plays an integral role in association mapping, and determines the resolution of an association study. Recently, association mapping has been exploited to dissect quantitative trait loci (QTL). With the exception of maize and Arabidopsis, little research has been conducted on LD in plants. The mating system of the species (selfing versus outcrossing), and phenomena such as population structure and recombination hot spots, can strongly influence patterns of LD. The basic patterns of LD in plants will be better understood as more species are analyzed.

Từ khóa


Tài liệu tham khảo

Ching A, 2002, Biomed. Central Genetics, 3, 19

10.1038/ng0694-180

10.2135/cropsci1983.0011183X002300050031x

10.1006/geno.1995.9003

10.1104/pp.125.3.1406

10.1038/386485a0

10.1086/316906

10.1038/ng767

10.1006/tpbi.2001.1547

Falconer DS, 1996, Introduction to Quantitative Genetics.

10.1101/gr.10.2.220

10.2307/2342435

10.1126/science.289.5476.85

10.1073/pnas.132259199

10.1073/pnas.022635499

10.1093/oxfordjournals.jhered.a023070

Hagenblad J, 2002, Genetics, 161, 289, 10.1093/genetics/161.1.289

10.1017/S0016672300004857

10.1038/ng1192-204

10.1093/oxfordjournals.molbev.a003963

10.1007/BF01245622

10.1016/S1360-1385(01)02017-9

10.1007/s001220051414

10.1038/ng1001-217

10.1126/science.290.5490.344

10.1101/gr.144500

10.1126/science.2570460

Knowler WC, 1988, Am. J. Hum. Genet., 43, 520

10.1038/9642

Labate JA, 2000, Maydica, 45, 243

10.1126/science.8091226

Langley CH, 2000, Genetics, 156, 1837, 10.1093/genetics/156.4.1837

10.1023/A:1014893521186

Lewontin RC, 1964, Genetics, 49, 49, 10.1093/genetics/49.1.49

Long AD, 1998, Genetics, 149, 999, 10.1093/genetics/149.2.999

Nordborg M, 2000, Genetics, 154, 923, 10.1093/genetics/154.2.923

10.1038/ng813

Nordborg M, 1997, Genetics, 146, 1185, 10.1093/genetics/146.3.1185

10.1038/22307

10.1086/321275

10.1086/302449

Pritchard JK, 2000, Genetics, 155, 945, 10.1093/genetics/155.2.945

10.1086/302959

10.1017/S0016672301004967

10.1016/S1369-5266(02)00240-6

10.1038/35075590

10.1002/1098-2272(200101)20:1<4::AID-GEPI2>3.0.CO;2-T

10.1073/pnas.201394398

10.1046/j.1365-294X.2000.01122.x

10.1038/77100

Templeton AR, 1987, Genetics, 117, 343, 10.1093/genetics/117.2.343

10.1073/pnas.151244298

10.1038/90135

10.1016/S0959-437X(00)00248-3

10.1073/pnas.102171899

Weir BS, 1996, Genetic Data Analysis II.

10.1073/pnas.202476999

10.1104/pp.100.1.403

10.1105/tpc.12.12.2473

10.1073/pnas.082562199