Structure for energy cycle: a unique status of the second law of thermodynamics for living systems
Tóm tắt
Distinguishing things from beings, or matters from lives, is a fundamental question. Extending E. Schrödinger’s neg-entropy and I. Prigogine’s dissipative structure, we propose a chemical kinetic view that the earliest “live” process is embedded essentially in a special interaction between a pair of specific components under a particular, corresponding environmental conditions. The interaction exists as an inter-molecular-force-bond complex (IMFBC) that couples two separate chemical processes: one is the spontaneous formation of the IMFBC driven by a decrease of Gibbs free energy as a dissipative process; while the other is the disassembly of the IMFBC driven thermodynamically by free energy input from the environment. The two chemical processes coupled by the IMFBC originated independently and were considered non-living on Earth, but the IMFBC coupling of the two can be considered as the earliest form of metabolism: the first landmark on the path from things to a being. The dynamic formation and disassembly of the IMFBC, as a composite individual, follows a principle designated as “… structure for energy for structure for energy…”, the cycle continues; and for short it will be referred to as “structure for energy cycle”. With additional features derived from this starting point, the IMFBC-centered “live” process spontaneously evolved into more complex living organisms with the characteristics currently known.
Tài liệu tham khảo
Anderson, P.W. (1972). More is different: broken symmetry and nature of hierarchical structure of science. Science 177, 393–396.
Anfinsen, C.B. (1973). Principles that govern the folding of protein chains. Science 181, 223–230.
Blum, H.F. (1951). Time’s Arrow and Evolution. (Princeton: Princeton University Press).
Chan, H.S. (1995). Kinetics of protein folding. Nature 373, 664–665.
Cohen, S.N., and Chang, A.C.Y. (1973). Recircularization and autonomous replication of a sheared R-factor DNA segment in Escherichia coli transformants. Proc Natl Acad Sci USA 70, 1293–1297.
Copley, S.D. (2015). An evolutionary biochemist’s perspective on promiscuity. Trends Biochem Sci 40, 72–78.
Copley, S.D., Smith, E., and Morowitz, H.J. (2005). A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc Natl Acad Sci USA 102, 4442–4447.
Crick, F. (1958). On protein synthesis. Symposia Society Exp Biol 12, 138–163.
Crick, F. (1970). Central dogma of molecular biology. Nature 227, 561–563.
Crick, F. (1981). Life Itself: Its Origin and Nature. (New York: Simon & Schuster).
Drygin, Y. (1998). Natural covalent complexes of nucleic acids and proteins: some comments on practice and theoryon the path from wellknown complexes to new ones. Nucleic Acids Res 26, 4791–4796.
Dyson, F.J. (1999). Origins of life, Rev. ed. (Cambridge England; New York: Cambridge University Press).
Eigen, M., McCaskill, J., and Schuster, P. (1988). Molecular quasi-species. J Phys Chem 92, 6881–6891.
Eigen, M., and Schuster, P. (1979). The Hypercycle, a Principle of Natural Self-Organization. (Berlin; New York: Springer-Verlag).
Fisher, M.E., and Zuckerman, D.M. (1998). Chemical association via exact thermodynamic formulations. Chem Phys Lett 293, 461–468.
Ge, H., Qian, M., and Qian, H. (2012). Stochastic theory of nonequilibrium steady states. Part II: applications in chemical biophysics. Phys Rep 510, 87–118.
Harrison, L.G. (1993). Kinetic Theory of Living Pattern. (Cambridge; New York: Cambridge University Press).
Hopfield, J.J. (1978). Origin of the genetic code: a testable hypothesis based on tRNA structure, sequence, and kinetic proofreading. Proc Natl Acad Sci USA 75, 4334–4338.
Hopfield, J.J. (1994). Physics, computation, and why biology looks so different. J Theor Biol 171, 53–60.
Huang, S., Li, F., Zhou, J.X., and Qian, H. (2017). Processes on the emergent landscapes of biochemical reaction networks and heterogeneous cell population dynamics: differentiation in living matters. J R Soc Interface 14, 20170097.
Jackson, D.A., Symons, R.H., and Berg, P. (1972). Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci USA 69, 2904–2909.
Kauffman, S.A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22, 437–467.
Kauffman, S.A. (2011). Approaches to the origin of life on Earth. Life 1, 34–48.
Kirschner, M., and Gerhart, J. (2005). The Plausibility of Life: Resolving Darwin’s Dilemma. (New Haven: Yale University Press).
Kohler, R. (1971). The background to Eduard Buchner’s discovery of cell-free fermentation. J History Biol 4, 35–61.
Kohler, R.E. (1972). The reception of Eduard Buchner’s discovery of cellfree fermentation. J History Biol 5, 327–353.
Leopold, P.E., Montal, M., and Onuchic, J.N. (1992). Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci USA 89, 8721–8725.
Li, H., Helling, R., Tang, C., and Wingreen, N. (1996). Emergence of preferred structures in a simple model of protein folding. Science 273, 666–669.
Miller, S.L. (1953). A production of amino acids under possible primitive earth conditions. Science 117, 528–529.
Miller, S.L., and Urey, H.C. (1959). Organic Compound Synthes on the Primitive Eart: several questions about the origin of life have been answered, but much remains to be studied. Science 130, 245–251.
Monod, J., Wyman, J., and Changeux, J.P. (1965). On the nature of allosteric transitions: a plausible model. J Mol Biol 12, 88–118.
Morowitz, H.J. (1968). Energy Flow in Biology Biological Organization as a Problem in Thermal Physics. (New York: Academic Press).
Noble, D. (2006). The Music of Life: Biology Beyond the Genome. (Oxford; New York: Oxford University Press).
Oparin, A.I. (1953). The Origin of Life, 2d ed. (New York: Dover Publications).
Orgel, L.E. (2004). Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39, 99–123.
Prigogine, I., Nicolis, G., and Babloyantz, A. (1972a). Thermodynamics of evolution. Phys Today 25, 23–28.
Prigogine, I., Nicolis, G., and Babloyantz, A. (1972b). Thermodynamics of evolution: ideas of nonequilibrium order and of search for stability extend darwins concept back to prebiotic stage by redefining “fittest”. Phys Today 25, 38–44.
Qian, H. (2006). Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations. J Phys Chem B 110, 15063–15074.
Qian, H. (2017). Information and entropic force: physical description of biological cells, chemical reaction kinetics, and information theory (in Chinese). Sci Sin Vitae 47, 257–261.
Qian, H., Ao, P., Tu, Y., and Wang, J. (2016). A framework towards understanding mesoscopic phenomena: emergent unpredictability, symmetry breaking and dynamics across scales. Chem Phys Lett 665, 153–161.
Rose, S. (2016). How to Get Another Thorax. London Review of Books 38, 15–17.
Saitta, A.M., and Saija, F. (2014). Miller experiments in atomistic computer simulations. Proc Natl Acad Sci USA 111, 13768–13773.
Schrodinger, E. (1945). What is Life? The Physical Aspect of the Living Cell. (Cambridge England; New York: The University press; The Macmillan company).
Smith, E., and Morowitz, H.J. (2016). The origin and nature of life on Earth: the emergence of the fourth geosphere. (Cambridge: Cambridge U. Press), pp. 691.
Thomas, J.M. (2002). The scientific and humane legacy of Max Perutz (1914–2002). Angew Chem Int Ed 41, 3155–3166.
Wachtershauser, G. (1988). Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52, 452–484.
Wächtershäuser, G. (2006). From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc B-Biol Sci 361, 1787–1808.
Walker, S.I. (2017). Origins of life: a problem for physics, a key issues review. Rep Prog Phys 80, 092601.
Watson, J.D., and Crick, F.H. (1953). Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738.