Structure and properties of polyimide (BTDA-TDI/MDI co-polyimide) fibers obtained by wet-spinning

Macromolecular Research - Tập 19 - Trang 645-653 - 2011
Hong Bing Xiang1, Zhong Huang1, Li Qi Liu1, Lei Chen2, Jing Zhu2, Zu Ming Hu2, Jun Rong Yu3
1College of Material Science and Engineering, Donghua University, Shanghai, People’s Republic of China
2Man-made Fiber Research Institute, Donghua University, Shanghai, People’s Republic of China
3State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, People’s Republic of China

Tóm tắt

BTDA-TDI/MDI (P84, synthesized by the condensation of 2,4-diisocyanato-1-methylbenzene and 1,1′-methylenebis(4-isocyanatobenzene) with 5,5′-carbonylbis(l,3-isobenzofurandione)) co-polyimide fibers were prepared by wet-spinning. The basic spinning conditions were found from the studies of dope viscosity, ternary phase diagrams, coagulation value, and precipitation value. The effect of the coagulation bath composition on the morphology of as-spun fibers was investigated and a theoretical approach was used to understand the coagulation phenomena. Scanning electron microscopy (SEM) showed that the cross-sectional shape of the fiber deviated more from an ellipse shape with the increasement of N-methyl-2-pyrrdidinone (NMP) content. The surface and cross section morphology of the as-spun fibers was also analyzed by the rate of diffusion and phase separation. The as-spun fibers were treated in heating tubes without drawing at different temperatures. The gravimetric analysis spectra showed that the BTDA-TDI/MDI co-polyimide fibers, which had been heat treated at 350 and 400 °C, possessed better thermal properties than the as-spun fibers, a large weight loss was observed only above 550 °C. Heat treatment of the fibers resulted in relatively high tensile strength and modulus. The fibers spun in Bath C (70/30, NMP/water, wt/wt) and Bath D (80/20, NMP/water, wt/wt) showed better thermal properties and higher tensile strength.

Tài liệu tham khảo

H. H. Yang, in Aromatic High-Strength Fibers, Wiley, New York, 1989, p 673. K. Weinrotter and S. Seidl, in Handbook of Fiber Science and Technology, Marcel Dekker, New York, 1993, p 179. S. K. Park and R. J. Farris, Polymer, 42, 10087 (2001). C. Neuber, H. W. Schmidt, and R. Giesa, Macromol. Mater. Eng., 291, 1315 (2006). Q. H. Zhang, M. Dai, M. X. Ding, D. J. Chen, and L. X. Gao, Eur. Polym. J., 40, 2487 (2004). W. M. Edwards, U.S. Patent 3,179,614 (1965). R. S. Irwin, U.S. Patent 3,415,782 (1968). M. M. Koton, U.K. Patent 1,183,306A (1970). M. M. Koton, U.K. Patent 2,025,311A (1980). N. R. Prokopchuk, Y. G. Baklagina, L. N. Korzhavin, A. V. Sidorovich, and M. M. Koton, Vysokomol. Soedin., A19, 1126 (1977). N. R. Prokopchuk, L. N. Korzhavin, A. V. Sidorovich, I. S. Milevskaya, Y. G. Baklagina, and M. M. Koton, Dokl. Akad. Nauk SSSR, 236, 127 (1977). T. E. Snkhanova, Y. G. Baklagina, V. V. Kudryavtsev, A. Maricheva, and F. Lednický, Polymer, 40, 6265 (1999). T. Kaneda, T. Katsur, K. Nakagawa, H. Makino, and M. Horio, J. Appl. Polym. Sci., 32, 3133 (1986). S. Hara, T. Yamada, and T. Yoshida, U.S. Patent 3,829,399 (1974). M. Minami and M. Taniguchi, U.S. Patent 3,860,559 (1975). K. Nagaoka, U.S. Patent 4,448,957 (1984). M. Eashoo, Z. Wu, A. Zhang, D. Shen, C. Tse, and F. W. Harris, Macromol. Chem. Phys., 195, 2207 (1994). K. Weinrotter, T. Jeszenszky, H. Schmidt, S. Baumann, and J. Kalleitner, U.S. Patent 4,801,502 (1989). A. G. Lenzing, High Perform. Text, 7, 13 (1990). W. J. Farrissey and B. K. Onder, U.S. Patent 3,985,934 (1976). J. Z. Ren, Z. S. Li, and F. S. Wong, J. Membr. Sci., 241, 305 (2004). M. Eashoo, J. Leonard, A. K. Buckley, and S. T. Clair, J. Polym. Sci. Phys., 35, 173 (1997). J. C. Masson, in Acrylic Fiber Technology and Applications, Marcel Dekker, New York, 1995, p 65. J. P. Knudsen, Tex. Res. J., 33, 13 (1963). W. Albrecht, T. M. Weigel, K. Schossig-Tiedemann, K. V. Kneifel, and D. P. Peinemann, J. Membr. Sci., 192, 217 (2001). R. J. Dong, J. X. Zhao, Y. W. Zhang, and D. Pan, J. Polym. Sci. Phys., 47, 261 (2009). N. Peng, T. S. Chung, and K. Y. Wang, J. Membr. Sci., 318, 363 (2008). X. Y. Qiao, T. S. Chung, and K. P. Pramoda, J. Membr. Sci., 264, 176 (2005). J. Y. Kim, H. K. Lee, K. J. Baik, and S. C. Kim, J. Appl. Polym. Sci., 65, 2643 (1997). J. H. Kim, B. R. Min, J. Won, H. C. Park, and Y. S. Kang, J. Membr. Sci., 187, 47 (2001). R. M. Boom, T. Van den Boomgaard, J. W. A. Van den Berg, and C. A. Smolders, Polymer, 34, 2348 (1993). H. Tompa, in Polymer Solutions, Butterworths, London, 1956, p 183. A. Ziabicki, in Fundamentals of Fibre Formation, Shanghai Science and Technology Press, Shanghai, 1983, p 315. D. L. Wang, K. Li, S. Sourirajan, and W. K. Teo, J. Appl. Polym. Sci., 50, 1693 (1993). D. L. Wang, K. Li, and W. K. Teo, J. Membr. Sci., 98, 233 (1995). J. H. Sung, H. S. Kim, H. J. Jin, H. J. Choi, and I. J. Chin, Macromolecules, 37, 9899 (2004). J. N. Barsema, G. C. Kapantaidakis, N. F. A. Van der Vegt, G. H. Koops, and M. Wessling, J. Membr. Sci., 216, 195 (2003). T. S. Chung, S. K. Teoh, and X. Hu, J. Membr. Sci., 133, 161 (1997). J. Z. Ren, Z. S. Li, and R. Wang, J. Membr. Sci., 309, 196 (2008). J. Barzin and B. Sadatnia, Polymer, 48, 1620 (2007). R. J. Ray, W. B. Krantz, and R. L. Sani, J. Membr. Sci., 23, 155 (1985).