Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli

JBIC Journal of Biological Inorganic Chemistry - Tập 13 - Trang 271-288 - 2007
Liliya A. Yatsunyk1, J. Allen Easton2, Lydia R. Kim1, Stacy A. Sugarbaker2, Brian Bennett3, Robert M. Breece4, Ivan I. Vorontsov5, David L. Tierney4, Michael W. Crowder2, Amy C. Rosenzweig1
1Departments of Biochemistry, Molecular Biology, and Cell Biology and of Chemistry, Northwestern University, Evanston, USA
2Department of Chemistry and Biochemistry, Miami University, Oxford, USA
3National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, Milwaukee, USA
4Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, USA
5Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, USA

Tóm tắt

ZnuA is the periplasmic Zn2+-binding protein associated with the high-affinity ATP-binding cassette ZnuABC transporter from Escherichia coli. Although several structures of ZnuA and its homologs have been determined, details regarding metal ion stoichiometry, affinity, and specificity as well as the mechanism of metal uptake and transfer remain unclear. The crystal structures of E. coli ZnuA (Eco-ZnuA) in the apo, Zn2+-bound, and Co2+-bound forms have been determined. ZnZnuA binds at least two metal ions. The first, observed previously in other structures, is coordinated tetrahedrally by Glu59, His60, His143, and His207. Replacement of Zn2+ with Co2+ results in almost identical coordination geometry at this site. The second metal binding site involves His224 and several yet to be identified residues from the His-rich loop that is unique to Zn2+ periplasmic metal binding receptors. Electron paramagnetic resonance and X-ray absorption spectroscopic data on CoZnuA provide additional insight into possible residues involved in this second site. The second site is also detected by metal analysis and circular dichroism (CD) titrations. Eco-ZnuA binds Zn2+ (estimated K d < 20 nM), Co2+, Ni2+, Cu2+, Cu+, and Cd2+, but not Mn2+. Finally, conformational changes upon metal binding observed in the crystal structures together with fluorescence and CD data indicate that only Zn2+ substantially stabilizes ZnuA and might facilitate recognition of ZnuB and subsequent metal transfer.

Tài liệu tham khảo

Hantke K (2001) Biometals 14:239–249 Hantke K (2005) Curr Opin Microbiol 8:196–202 Patzer SI, Hantke K (1998) Mol Microbiol 28:1199–1210 Lu D, Boyd B, Lingwood CA (1997) J Biol Chem 272:29033–29038 Kim S, Watanabe K, Shirahata T, Watarai M (2004) J Vet Med Sci 66:1059–1063 Claverys J-P (2001) Res Microbiol 152:231–243 Banerjee S, Wei B, Bhattacharyya-Pakrasi M, Pakrasi HD, Smith T (2003) J Mol Biol 333:1061–1069 Wei B, Randich AM, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ (2007) Biochemistry 46:8734–8743 Tong L, Golden JW, Giedroc DP (2005) Biochemistry 44:8673–8683 Lawrence MC, Pilling PA, Epa VC, Berry AM, Ogunniyi AD, Paton JC (1998) Structure 6:1553–1561 Lee Y-H, Deka RK, Norgard MV, Radolf JD, Hasemann CA (1999) Nat Struct Biol 6:628–633 Rukhman V, Anati M, Melamed-Frank M, Adir N (2005) J Mol Biol 348:961–969 Chandra BR, Yogavel M, Sharma A (2007) J Mol Biol 367:970–982 Li H, Jogl G (2007) J Mol Biol 368:1358–1366 Lee Y-H, Dorwart MR, Hazlett KR, Deka RK, Norgard MV, Radolf JD, Hasemann CA (2002) J Bacteriol 184:2300–2304 Ledvina PS, Tsai AL, Wang Z, Koehl E, Quiocho FA (1998) Protein Sci 7:2550–2559 Mao B, Pear MR, McCammon JA, Quiocho FA (1982) J Biol Chem 257:1131–1133 Sharff AJ, Rodseth LE, Spurlino JC, Quiocho FA (1992) Biochemistry 31:10657–10663 Hazlett KRO, Rusnak F, Kehres DG, Bearden SW, La Vake CJ, La Vake ME, Maguire ME, Perry RD, Radolf JD (2003) J Biol Chem 278:20687–20694 Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326 Sheldrick G, Schneider T (1997) Methods Enzymol 277:319–343 Grosse-Kunstleve RW, Adams PD (2003) Acta Crystallogr Sect D 59:1966–1973 de La Fortelle E, Bricogne G (1997) Methods Enzymol 276:472–494 Perrakis A, Morris R, Lamzin VS (1999) Nat Struct Biol 6:458–463 McRee DE (1999) J Struct Biol 125:156–165 Emsley PKC (2004) Acta Crystallogr Sect D 60:2126–2132 Brünger AT, Adams PD, Clore GM, Delano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski J, Nilges N, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr Sect D 54:905–921 4 CCPN (1994) Acta Crystallogr Sect D 50:760–763 Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291 Storoni LC, McCoy AJ, Read RJ (2004) Acta Crystallogr Sect D 60:432–438 Kleywegt GJ, Jones TA (1994) CCP4/ESF-EACBM Newsl Protein Crystallogr 31:9–14 Ramsay GD, Eftink M (1994) Methods Enzymol 240:615–645 Liu J, Stemmler AJ, Fatima J, Mitra B (2005) Biochemistry 44:5159–5167 Liu J, Dutta SJ, Stemmler AJ, Mitra B (2006) Biochemistry 45:763–772 Dutta SJ, Liu J, Hou Z, Mitra B (2006) Biochemistry 45:5923–5931 Walkup GK, Imperiali B (1997) J Am Chem Soc 119:3443–3450 Kuzmic P (1996) Anal Biochem 237:260–273 Brenner AJ, Harris ED (1995) Anal Biochem 226:80–84 Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85 Costello AL, Periyannan G, Yang K-W, Crowder MW, Tierney DL (2006) J Biol Inorg Chem 11:351–358 Thomas PW, Stone EM, Costello AL, Tierney DL, Fast W (2005) Biochemistry 44:7559–7565 Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565–7576 Dudev T, Lim C (2003) Chem Rev 103:773–787 Auld DS (2001) Biometals 14:271–313 Seny D, Heinz U, Wommer S, Kiefer M, Meyer-Klaucke W, Galleni M, Frere J-M, Bauer R, Adolph H-W (2001) J Biol Chem 276:45065–45078 Simons TJ (1993) J Biochem Biophys Methods 27:25–37 Dintlhac A, Alloing G, Granadel C, Claverys J-P (1997) Mol Microbiol 25:727–739 Ippolito JA, Baird TT, McGee SA, Christianson DW, Fierke CA (1995) Proc Natl Acad Sci USA 92:5017–5021