Structural prototypes for an extended family of flavoprotein reductases: Comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin

Protein Science - Tập 2 Số 12 - Trang 2112-2133 - 1993
Carl C. Correll1, Martha Ludwig1, Christopher M. Bruns2, P. Andrew Karplus2
1Department of Biological Chemistry and Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109
2Division of Biological Sciences, Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853

Tóm tắt

Abstract

The structure of phthalate dioxygenase reductase (PDR), a monomeric iron‐sulfur flavoprotein that delivers electrons from NADH to phthalate dioxygenase, is compared to ferredoxin‐NADP+ reductase (FNR) and ferredoxin, the proteins that reduce NADP+ in the final reaction of photosystem I. The folding patterns of the domains that bind flavin, NAD(P), and [2Fe‐2S] are very similar in the two systems. Alignment of the X‐ray structures of PDR and FNR substantiates the assignment of features that characterize a family of flavoprotein reductases whose members include cytochrome P‐450 reductase, sulfite and nitrate reductases, and nitric oxide synthase. Hallmarks of this subfamily of flavoproteins, here termed the FNR family, are an antiparallel β‐barrel that binds the flavin prosthetic group, and a characteristic variant of the classic pyridine nucleotide‐binding fold. Despite the similarities between FNR and PDR, attempts to model the structure of a dissociable FNR:ferredoxin complex by analogy with PDR reveal features that are at odds with chemical crosslinking studies (Zanetti, G., Morelli, D., Ronchi, S., Negri, A., Aliverti, A., & Curti, B., 1988, Biochemistry 27, 3753–3759).

Differences in the binding sites for flavin and pyridine nucleotides determine the nucleotide specificities of FNR and PDR. The specificity of FNR for NADP+ arises primarily from substitutions in FNR that favor interactions with the 2′ phosphate of NADP+. Variations in the conformation and sequences of the loop adjoining the flavin phosphate affect the selectivity for FAD versus FMN.

The midpoint potentials for reduction of the flavin and [2Fe–2S] groups in PDR are higher than their counterparts in FNR and spinach ferredoxin, by about 120 mV and 260 mV, respectively. Comparisons of the structure of PDR with spinach FNR and with ferredoxin from Anabaena 7120, along with calculations of electrostatic potentials, suggest that local interactions, including hydrogen bonds, are the dominant contributors to these differences in potential.

Từ khóa


Tài liệu tham khảo

10.1111/j.1432-1033.1990.tb19156.x

10.1021/bi00076a010

10.1016/0014-5793(92)80452-M

10.1021/ja00006a027

Batie C.J., 1987, Flavins and Flavoproteins 1987, 377, 10.1515/9783110884715-066

Batie C.J., 1981, The relation of pH and oxidation‐reduction potential to the association state of the ferredoxin‐ferre‐doxin:NADP+ reductase complex, J. Biol. Chem., 256, 7756, 10.1016/S0021-9258(18)43341-8

Batie C.J., 1984, Electron transfer by ferredoxin:NADP+ reductase. Rapid reaction evidence for participation of a ternary complex, J. Biol. Chem., 259, 11976, 10.1016/S0021-9258(20)71306-2

Batie C.J., 1986, Association of ferredoxin NADP+ reductase with NADP(H): Specificity and oxidation‐reduction properties, J. Biol. Chem., 261, 11214, 10.1016/S0021-9258(18)67370-3

10.1021/bi00062a001

10.1038/351714a0

10.1128/jb.170.10.4924-4930.1988

Brünger A.T., 1992, X‐PLOR Manual, Version 3.0

10.1107/S0108767390002355

10.1107/S0021889890004228

10.1016/0263-7855(87)80024-3

10.1016/S0898-8838(08)60066-5

Carter C.W., 1977, New stereochemical analogies between iron‐sulfur electron transport proteins, J. Biol. Chem., 252, 7802, 10.1016/S0021-9258(17)41038-6

10.1073/pnas.69.12.3526

10.1021/bi00294a047

Chen J.L., 1993, Density functional calculations of redox potentials for FeS clusters including solvation effects, J. Inorg. Chem., 51, 449

10.1002/j.1460-2075.1986.tb04288.x

10.1016/S0021-9258(18)55106-1

Correll C.C.(1992).Structure determination and analysis of an iron‐sulfur flavoprotein: Phthalate dioxygenase reductase. Ph.D. Dissertation The University of Michigan Ann Arbor.

10.1126/science.1280857

10.1002/pro.5560020707

10.1021/bi00461a009

10.1016/0005-2728(71)90041-7

10.1016/0022-2836(90)90310-I

10.1038/286522a0

10.1002/prot.340030104

10.1002/prot.340040104

10.1073/pnas.88.20.9151

10.1021/bi00437a051

10.1021/bi00397a031

10.1002/qua.560310204

10.1021/bi00447a054

10.1016/0076-6879(85)15021-4

10.1016/0006-291X(83)90977-4

10.1021/bi00087a013

Hyde G.E., 1991, The sequence of squash NADH: nitrate reductase and its relationship to the sequences of other flavoprotein oxidoreductases, J. Biol. Chem., 266, 23542, 10.1016/S0021-9258(18)54316-7

10.1021/bi00631a021

10.1021/bi00705a023

Janin J., 1990, The structure of protein‐protein recognition sites, J. Biol. Chem., 265, 16027, 10.1016/S0021-9258(17)46181-3

10.1016/0022-2836(88)90606-7

10.1107/S0567739476001873

10.1002/bip.360221211

Karplus P.A., 1991, Flavins and Flavoproteins 1990, 449

10.1126/science.1986412

10.1016/0022-2836(89)90298-2

10.1021/bi00321a046

10.1042/bj2630285

Keirns J.J., 1972, Studies on nicotinamide adenine di‐nucleotide phosphate reductase of spinach chloroplasts, J. Biol. Chem., 247, 7374, 10.1016/S0021-9258(19)44639-5

10.1016/S0021-9258(18)35647-3

10.1016/0022-2836(89)90178-2

Liu R.&Zylstra G.(1992).Cloning and characterization of the genes for phthalate degradation fromPseudomonas cepaciaDB01.Abstr. Annu. Meet. Am. Soc. Microbiol.1992 262.

Ludwig M.L., 1992, Chemistry and Biochemistry of Flavoenzymes, 427

10.1111/j.1432-1033.1985.tb08749.x

Markley J.L., 1986, Iron‐Sulfur Protein Research, 167

10.1111/j.1749-6632.1974.tb14407.x

10.1007/978-3-642-49974-6_34

10.1016/0959-440X(91)90091-7

10.1007/978-3-642-69287-1_11

10.1002/prot.340130406

10.1128/jb.173.17.5385-5395.1991

10.1002/jcc.540120405

10.1021/ja00320a017

10.1016/S0898-8838(08)60070-7

10.1021/ja00298a004

Nordlund I., 1990, Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600, J. Bacteriol., 171, 6826, 10.1128/jb.172.12.6826-6833.1990

10.1016/S0021-9258(18)71547-0

10.1021/bi00412a038

10.1073/pnas.68.1.68

10.1007/BF00017743

10.1016/0003-9861(92)90697-U

10.1111/j.1432-1033.1991.tb16471.x

10.1016/0022-2836(92)90849-F

10.1016/0076-6879(85)15032-9

10.1021/bi00231a003

10.1016/0003-9861(72)90096-3

10.1016/0959-440X(92)90178-A

10.1038/343038a0

10.1042/bj2840781

10.1021/j100382a068

Shirabe K., 1991, Role of cysteine residues in human NADH‐cytochrome b 5 reductase studied by site‐directed mutagenesis, J. Biol. Chem., 266, 7531, 10.1016/S0021-9258(20)89479-4

10.1016/0378-1119(93)90613-8

10.1021/bi00244a002

10.1073/pnas.73.4.1078

10.1021/bi00452a007

Spence J.T., 1988, Stoichiometry of electron uptake and oxidationreduction midpoint potentials of NADH:nitrate reductase, Biochem. J., 250, 921, 10.1042/bj2500921

10.1128/jb.173.12.3673-3679.1991

10.1016/0378-1119(90)90158-N

Sussman J.L., 1986, Iron‐Sulfur Protein Research, 69

10.1128/jb.173.5.1690-1695.1991

Swartzman E., 1990, Delineation of the transcriptional boundaries of the lux operon of Vibrio harveyi demonstrates the presence of two new lux genes, J. Biol. Chem., 265, 3513, 10.1016/S0021-9258(19)39798-4

Swenson R.P., 1991, Flavins and Flavoproteins 1990, 415

10.1016/0378-1119(89)90299-0

10.1107/S0108767387099124

10.1016/S0022-2836(05)80330-4

10.1016/0005-2728(86)90254-9

10.1073/pnas.87.22.8965

10.1016/0022-2836(86)90409-2

10.1021/bi00410a035