Structural-morphological and sedimentary features of forearc slope off Miyagi, NE Japan: implications for development of forearc basins and plumbing systems

Geo-Marine Letters - Tập 40 - Trang 309-324 - 2020
Jih-Hsin Chang1, Jin-Oh Park2, Tzu-Ting Chen3, Asuka Yamaguchi2, Tetsuro Tsuru4, Yuji Sano2, Ho-Han Hsu3, Kotaro Shirai2, Takanori Kagoshima2, Kentaro Tanaka2, Chiori Tamura2
1Institute of Geology and Geoinformation, Geological Society of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
2Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
3Institute of Oceanography, National Taiwan University, Taipei, Taiwan
4Tokyo University of Marine Science and Technology, Tokyo, Japan

Tóm tắt

Multibeam (MB) and subbottom profile (SBP) data along the forearc slope off Miyagi, Japan, are combined to investigate structural-morphological and sedimentary structures along the forearc slope of the Japan Trench subduction zone. In addition to dip-oriented slope gullies, the MB data image a nearly dip-perpendicular slope trough bounded by a fault scarp landward of the trench-slope break. Seaward of the trench-slope break, the subbottom mostly contains normal faults that dip in opposite directions. The SBP data show not only unconformity and sliding surfaces, but also underfilled (forearc trough) and filled structures that may reflect the most recent forearc subsidence and basin filling. We propose these forearc trough and associated filling structures may indicate the earliest developments of modern isolated basins. Thus, a model of forearc basin development from slope gully to slope trough, isolated basins and forearc basin, transferred by active structures, could be proposed. Observed seafloor liquefaction in the SBP data may represent a near-surface seep structure of a plumbing system that enables hydrosphere-mantle fluid migration plausibly activated by earthquake cycles.

Tài liệu tham khảo

Arai K, Inoue T, Ikehara K, Sasaki T (2014) Episodic subsidence and active deformation of the forearc slope along the Japan Trench near the epicenter of the 2011 Tohoku earthquake. Earth Planet Sci Lett 408:9–15. https://doi.org/10.1016/j.epsl.2014.09.048 Bangs NL, McIntosh KD, Silver EA, Kluesner JW, Ranero CR (2014) Fluid accumulation along the Costa Rica subduction thrust and development of the seismogenic zone: the Costa Rica subduction thrust. J Geophys Res Solid Earth 120:67–86. https://doi.org/10.1002/2014JB011265 Boston B, Moore GF, Nakamura Y, Kodaira S (2014) Outer-rise normal fault development and influence on near-trench décollement propagation along the Japan Trench, off Tohoku. Earth, Planets and Space 66 (1):135. https://doi.org/10.1186/1880-5981-66-135 Boston B, Moore GF, Nakamura Y, Kodaira S (2017) Forearc slope deformation above the Japan Trench megathrust: implications for subduction erosion. Earth Planet Sci Lett 462:26–34. https://doi.org/10.1016/j.epsl.2017.01.005 Constenius KN, Johnson RA, Dickinson WR, Williams TA (2000) Tectonic evolution of the Jurassic–Cretaceous Great Valley forearc, California: implications for the Franciscan thrust-wedge hypothesis. Geol Soc Am Bull 112:1703–1723 Dickinson WR (1995) Forearc basin. In: Busby CJ, Ingersoll RV (eds) Tectonics of sedimentary basins. Blackwell Science, Cambridge, pp 221–261 Firetto Carlino M, Di Stefano A, Budillon F (2013) Seismic facies and seabed morphology in a tectonically controlled continental shelf: the Augusta Bay (offshore eastern Sicily, Ionian Sea). Mar Geol 335:35–51. https://doi.org/10.1016/j.margeo.2012.10.009 Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth, Planets and Space 63:815–820. https://doi.org/10.5047/eps.2011.06.010 Fulton PM, Brodsky EE (2016) In situ observations of earthquake-driven fluid pulses within the Japan Trench plate boundary fault zone. Geology 44:851–854. https://doi.org/10.1130/G38034.1 Georgiopoulou A, Cartwright JA (2013) A critical test of the concept of submarine equilibrium profile. Mar Pet Geol 41:35–47. https://doi.org/10.1016/j.marpetgeo.2012.03.003 Greene TJ, Surpless KD (2017) Facies architecture and provenance of a boulder-conglomerate submarine channel system, Panoche Formation, Great Valley Group: a forearc basin response to middle Cretaceous tectonism in the California convergent margin. Geosphere 13:838–869. https://doi.org/10.1130/GES01422.1 Hallock ZR, Teague WJ (1996) Evidence for a North Pacific deep western boundary current. J Geophys Res 101:6617–6624 Honza E, Kagami H, Nasu N (1977) Neogene geological history of the Tohoku Island arc system. J Oceanogr 33:297–310 Hurst, A., Cartweight, J., Duranti, D., 2003. Fluidization structures produced by upward injection of sand through a sealing lithology, in: Hillis, P., Maltman, R.R., and Morley, C.K., (Eds.), Subsurface sediment mobilization. Geological society, Lodon, special publication 216, pp. 123–137 Ide S, Baltay A, Beroza GC (2011) Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 332:1426–1429. https://doi.org/10.1126/science.1207020 Ingersoll RV (1979) Evolution of the Late Cretaceous forearc basin, northern and central California. Geol Soc Am Bull 90:813–826 Ingersoll RV (1982) Initiation and evolution of the Great Valley forearc basin of northern and central California, U.S.A. Geol Soc Lond Spec Publ 10:459–467 Isozaki Y, Aoki K, Nakama T, Yanai S (2010) New insight into a subduction-related orogen: a reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Res 18:82–105. https://doi.org/10.1016/j.gr.2010.02.015 Ito M (1996) Sandy contourites of the Lower Kazusa Group in the Boso Peninsula, Japan: Kuroshio current influenced deep-sea sedimentation in a Plio-Pleistocene forearc basin. J Sediment Res 66:587–598 Ito, M., 2002. Kuroshio current-influenced sandy contourites from the Plio-Pleistocene Kazusa forearc basin, Boso Peninsula, Japan. In: Stow, D.A.V., Pudsey, C.J., Howe, J.A., Faugères, J.-C., Viana, A.R. (Eds.), Deep-water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics. Geological society, London, memoirs, 2, pp. 421–432 Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987 Kanamori H, Miyazawa M, Mori J (2006) Investigation of the earthquake sequence off Miyagi prefecture with historical seismograms. Earth, Planets and Space 58:1533–1541 Kawamura K, Sasaki T, Kanamatsu T, Sakaguchi A, Ogawa Y (2012) Large submarine landslides in the Japan Trench: a new scenario for additional tsunami generation. Geophys Res Lett 39:L05308. https://doi.org/10.1029/2011GL050661 Kimura G, Hina S, Hamada Y, Kameda J, Tsuji T, Kinoshita M, Yamaguchi A (2012) Runaway slip to the trench due to rupture of highly pressurized megathrust beneath the middle trench slope: the tsunamigenesis of the 2011 Tohoku earthquake off the east coast of northern Japan. Earth Planet Sci Lett 339-340:32–45. https://doi.org/10.1016/j.epsl.2012.04.002 Kodaira S, No T, Nakamura Y, Fujiwara T, Kaiho Y, Miura S, Takahashi N, Kaneda Y, Taira A (2012) Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nat Geosci 5:646–650. https://doi.org/10.1038/ngeo1547 Kottke B, Schwenk T, Breitzke M, Wiedicke M, Kurdrass HR, Spiess V (2003) Acoustic facies and depositional process in the upper submarine canyon Swatch of No Ground (Bay of Bengal). Deep-sea Research II 50:979–1001. https://doi.org/10.1016/S0967-0645(02)00616-1 Langseth M, Von Huene R, Nasu N, Okada H (1981) Subsidence of the Japan Trench forarc region of North Honshu. Oceanol Acta 4:173–179 Lee SH, Chough SK (2001) High-resolution (2±7 kHz) acoustic and geometric characters of submarine creep deposits in the South Korea Plateau, East Sea. Sedimentology 48:629–644 Lee SH, Chough SK, Back GG, Kim YB (2002) Chirp (2-7-kHz) echo characters of the South Korea Plateau, East Sea: styles of mass movement and sediment gravity flow. Mar Geol 184:227–247 Ludwig WJ, Ewing JI, Ewing M, Murauchi S, Den N, Asano S, Hotta H, Hayakawa M, Asanuma T, Ichikawa K, Noguchi I (1966) Sediments and Structure of the Japan Trench:71 Luis JF (2007) Mirone: a multi-purpose tool for exploring grid data. Comput Geosci 33:31–41. https://doi.org/10.1016/j.cageo.2006.05.005 Mannu U, Ueda K, Willett SD, Gerya TV, Strasser M (2017) Stratigraphic signatures of forearc basin formation mechanisms. Geochem Geophys Geosyst 18:2388–2410. https://doi.org/10.1002/2017GC006810 Mulder T, Cochonat P (1996) Classification of offshore mass movements. J Sediment Res 66(1):43–57 Moore JC, Vrolijk P (1992) Fluids in accretion prism. Rev Geophys 30:113–135 Moore GF, Boston BB, Sacks AF, Saffer DM (2013) Analysis of normal fault populations in the Kumano Forearc Basin, Nankai Trough, Japan: 1. Multiple orientations and generations of faults from 3-D coherency mapping. Geochem Geophys Geosyst 14:1989–2002. https://doi.org/10.1002/ggge.20119 Nakamura Y, Kodaira S, Miura S, Regalla C, Takahashi N (2013) High-resolution seismic imaging in the Japan Trench axis area off Miyagi, northeastern Japan. Geophys Res Lett 40:1713–1718. https://doi.org/10.1002/grl.50364 Nasu N, von Huene R, Ishiwada Y, Langseth M, Bruns T, Honza E (1980) Interpretation of multichannel seismic reflection data, legs 56 and 57, Japan Trench transect, Deep Sea Drilling Project. Scientific Party, Init. Repts. DSDP 56:489–503 Nishimura T, Miura S, Tachibana K, Hashimoto K, Sato T, Hori S, Murakami E, Kono T, Nida K, Mishina M, Hirasawa T, Miyazaki S (2000) Distribution of seismic coupling on the subducting plate boundary in northeastern Japan inferred from GPS observations. Tectonophysics 323:217–238 Noda A (2016) Forearc basins: types, geometries, and relationships to subduction zone dynamics. Geol Soc Am Bull 128:879–895. https://doi.org/10.1130/B31345.1 Noda, A., Miyakawa, A., 2017. Deposition and deformation of modern accretionary- type forearc basins: linking basin formation and accretionary wedge growth. in: Itoh, Y. (Ed.), Evolutionary models of convergent margins - origin of their diversity. InTech. https://doi.org/10.5772/67559 Noda, A., TuZino, T., Furukawa, R., Joshima, M., Uchida, J., 2008. Physiographical and sedimentological characteristics of submarine canyons developed upon an active forearc slope: the Kushiro Submarine Canyon, northern Japan. Geol Soc Am Bull 120, 750–767. https:// doi: https://doi.org/10.1130/B26155.1 Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis- An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology 44:1–76 Ogawa Y, Kobayashi K, Hotta H, Fujioka K (1997) Tension cracks on the oceanward slopes of the northern Japan and Mariana trenches. Mar Geol 141:111–123 Oguri K, Furushima Y, Toyofuku T, Kasaya T, Wakita M, Watanabe S, Fujikura K, Kitazato H (2016) Long-term monitoring of bottom environments of the continental slope off Otsuchi Bay, northeastern Japan. J Oceanogr 72:151–166. https://doi.org/10.1007/s10872-015-0330-4 Okada H (1980) Sedimentary environments on and around island arcs: an example of the Japan Trench area. Precambrian Res 12:115–139 Owen G, Moretti M (2011) Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sediment Geol 235:141–147. https://doi.org/10.1016/j.sedgeo.2010.10.003 Pedrosa MT, Camerlenghi A, De Mol B, Urgeles R, Rebesco M, Lucchi RG, shipboard participants of the SVAIS and EGLACOM cruise (2011) Seabed morphology and shallow sedimentary structure of the storfjorden and Kveithola trough-mouth fans (North West Barents Sea). Mar Geol 286:65–81 https://10.1016/j.margeo.2011.05.009 Pirrotta C, Serafin Barbano M, Pantosti D, De Martini PM (2013) Evidence of active tectonics in the Augusta Basin (eastern Sicily, Italy) byChirp sub-bottom sonar investigation. Anals of Geophysics 56(5):S0562. https://doi.org/10.4401/ag-6371 Prather BE (2000) Calibration and visualization of depositional process models for above-grade slopes: a case study from the Gulf of Mexico. Mar Pet Geol 17:617–638 Prather BE, Booth JR, Steffens GS, Craig PA (1998) Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep-water Gulf of Mexico. AAPG Bull 82(5):701–728 Rebesco M, Neagu RC, Cuppari A, Muto F, Accettella D, Dominici R, Cova A, Romano C, Caburlotto A (2009) Morphobathymetric analysis and evidence of submarine mass movements in western Gulf of Taranto (Calabria margin, Ionian Sea). Int J Earth Sci 98:791–805. https://doi.org/10.1007/s00531-009-0429-1 Rebesco M, Hernández-Molina FJ, Van Rooij D, Wåhlin A (2014) Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations. Mar Geol 352:111–154. https://doi.org/10.1016/j.margeo.2014.03.011 Regalla C, Fisher DM, Kirby E, Furlong KP (2013) Relationship between outer forearc subsidence and plate boundary kinematics along the Northeast Japan convergent margin: NE Japan plate boundary kinematics. Geochem Geophys Geosyst 14:5227–5243. https://doi.org/10.1002/2013GC005008 Saffer DM, Tobin HJ (2011) Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu Rev Earth Planet Sci 39:157–186. https://doi.org/10.1146/annurev-earth-040610-133408 Saint-Ange F, Kuus P, Blasco S, Pipper DJW, Clarke JH, MacKillop K (2014) Multiple failure styles related to shallow gas and fluid venting, upper slope Canadian Beaufort Sea, northern Canada. Mar Geol 355:136–149 https://doi.org/10/1016/j.margeo.2014.05.014 Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res 114. https://doi.org/10.1029/2008JB006008 Sano Y, Hara T, Takahata N, Kawagucci S, Honda M, Nishio Y, Tanikawa W, Hasegawa A, Hattori K (2014) Helium anomalies suggest a fluid pathway from mantle to trench during the 2011 Tohoku-Oki earthquake. Nat Commun 5:1–6. https://doi.org/10.1038/ncomms4084 Sawai Y, Namegaya Y, Okamura Y, Satake K, Shishikura M (2012) Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology. Geophys Res Lett 39:L21309. https://doi.org/10.1029/2012GL053692 Scholl DW, von Huene R, Vallier TL, Howell DG (1980) Sedimentary masses and concepts about tectonic processes at underthrust ocean margins. Geology 8:564–568 Sibson RH (2014) Earthquake rupturing in fluid-overpressured crust: how common? Pure Appl Geophys 171:2867–2885. https://doi.org/10.1007/s00024-014-0838-3 Stow DAV, Hernández-Molina FJ, Llave E, Sayago-Gil M, Díaz-del Río V, Branson A (2009) Bedform-velocity matrix: the estimation of bottom current velocity from bedform observations. Geology 37:327–330 Strasser M, Kolling M, Ferreira CDS, Fink HG, Fujiwara T, Henkel S, Ikehara K, Kanamatsu T, Kawamura K, Kodaira S, Romer M, Wefer G, R/V Sonne Cruise SO219A, JAMSTEC Cruise MR12-E01 scientists (2013) A slump in the trench: tracking the impact of the 2011 Tohoku-Oki earthquake. Geology 41:935–938. https://doi.org/10.1130/G34477.1 Su, C.C., Tseng, J.Y., Hsu, H.H., Chiang C.S., Yu, H.S., Lin, S., Liu, J.T., 2012. Records of submarine natural hazards off SW Taiwan, in: Terry, J. P. and Goff, J. (Eds.), Natural hazards in the Asia – Pacific region: recent advances and emerging concepts. Geological Society, London, Special Publications, pp. 41–60 Suchecki RK (1984) Facies history of the Upper Jurassic-Lower Cretaceous Great Valley sequence: response to structural development of an outer-arc basin. J Sediment Res 54 Taira A (2001) Tectonic evolution of the Japanese island arc system. Annu Rev Earth Planet Sci 29:109–134 Takano, O., Itoh, Y., Kusumoto, S., 2013. Variation in forearc basin configuration and basin-filling depositional systems as a function of trench slope break development and strike-slip movement: examples from the Cenozoic Ishikari–Sanriku-Oki and Tokai-Oki–Kumano-Nada Forearc basins, Japan, in: Itoh, Y. (Ed.), Mechanism of sedimentary basin formation - multidisciplinary approach on active plate margins. InTech Talukder AR (2012) Review of submarine cold seep plumbing systems: leakage to seepage and venting: seeps plumbing system. Terra Nova 24:255–272. https://doi.org/10.1111/j.1365-3121.2012.01066.x Tauzin B, Reynard B, Perrillat J-P, Debayle E, Bodin T (2017) Deep crustal fracture zones control fluid escape and the seismic cycle in the Cascadia subduction zone. Earth Planet Sci Lett 460:1–11. https://doi.org/10.1016/j.epsl.2016.12.007 Tsuji T, Ito Y, Kido M, Osada Y, Fujimoto H, Ashi J, Kinoshita M, Matsuoka T (2011) Potential tsunamigenic faults of the 2011 off the Pacific coast of Tohoku earthquake. Earth, Planets and Space 63:831–834. https://doi.org/10.5047/eps.2011.05.028 Tsuji T, Kawamura K, Kanamatsu T, Kasaya T, Fujikura K, Ito Y, Tsuru T, Kinoshita M (2013) Extension of continental crust by anelastic deformation during the 2011 Tohoku-oki earthquake: the role of extensional faulting in the generation of a great tsunami. Earth Planet Sci Lett 364:44–58. https://doi.org/10.1016/j.epsl.2012.12.038 Tsuru T, Park JO, Miura S, Kodaira S, Kido Y, Hayashi T (2002) Along-arc structural variation of the plate boundary at the Japan trench margin: implication of interplate coupling. J Geophys Res 107(B12):2357 https://10.11029/2001JB001664 Ujiie K, Tanaka H, Saito T, Tsutsumi A, Mori J, Kameda J, Brodsky E, Chester F, Eguchi N, Toczko S, Expedition 343 and 343T Scientists (2013) Low coseismic shear stress on the Tohoku-oki megathrust determined from laboratory experiments. Science 342:1211–1214. https://doi.org/10.1126/science.1243485 Underwood MB, Moore GF (1995) Trenches and trench-slope basins. In: Busby CJ, Ingersoll RV (eds) Tectonics of sedimentary basins. Blackwell Science, Cambridge, pp 179–219 Vannucchi P, Morgan JP, Silver EA, Kluesner JW (2016) Origin and dynamics of depositionary subduction margins: depositionary subduction margins. Geochem Geophys Geosyst 17:1966–1974. https://doi.org/10.1002/2016GC006259 Volland S, Sturm M, Lukas S, Pino M, Müller J (2007) Geomorphological and sedimentological evolution of a lake basin under strong volcano-tectonic influence: the seismic record of Lago Calafquén (south-central Chile). Quat Int 161:32–45. https://doi.org/10.1016/j.quaint.2006.10.025 von Huene R, Culotta R (1989) Tectonic erosion at the front of the Japan Trench convergent margin. Tectonophysics 160:75–90 von Huene R, Lallemand S (1990) Tectonic erosion along the Japan and Peru convergent margins. Geol Soc Am Bull 102:704–720 von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316 von Huene R, Langseth M, Ishiwada Y, Bruns T, Honza E (1980) Interpretation of multichannel seismic reflection data, legs 56 and 57, Japan Trench transect, deep sea drilling project. Initial Rep Deep Sea Drill Proj 56:473–488 von Huene R, Langseth M, Nasu N, Okada H (1982) A summary of Cenozoic tectonic history along the IPOD Japan Trench transect. Geol Soc Am Bull 93:829–846 Wakabayashi, J., 2017. Sedimentary serpentinite and chaotic units of the lower Great Valley Group forearc basin deposits, California: updates on distribution and characteristics. International Geology Review 1–22. https://doi.org/10.1080/00206814.2016.1219679 Wessel P, Smith WH, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans Am Geophys Union 94:409–410 Williams TA, Graham SA (2013) Controls on forearc basin architecture from seismic and sequence stratigraphy of the Upper Cretaceous Great Valley Group, central Sacramento Basin, California. Int Geol Rev 55:2030–2059. https://doi.org/10.1080/00206814.2013.817520 Yamaguchi A, Hina S, Hamada Y, Kameda J, Hamahashi M, Kuwatani T, Shimizu M, Kimura G (2016) Source and sink of fluid in pelagic siliceous sediments along a cold subduction plate boundary. Tectonophysics 686:146–157. https://doi.org/10.1016/j.tecto.2016.07.030 Yamamoto, Y., Kawakami, S., 2014. Along-strike migration of intermittent submarine slope failures at subduction margins: geological evidence from the Chikura Group, Central Japan. in: Kraste, S. (Eds.), Submarine mass movements and their consequences, Springer International Publishing, pp. 551–570 Zaremba NJ, Scholz CA (2019) High-resolution seismic stratigraphy of Lae Pleistocene Glacial Lake Iroquois and its Holocene successor: Oneida Lake, New York. Palaegeography, Palaeoclimatology, Palaeoecology 534:109286. https://doi.org/10.1016/j.palaeo.2019.109286 Zwicker J, Smrzka D, Gier S, Goedert JL, Peckmann J (2015) Mineralized conduits are part of the uppermost plumbing system of Oligocene methane-seep deposits, Washington State (USA). Mar Pet Geol 66:616–630. https://doi.org/10.1016/j.marpetgeo.2015.05.035