Structural effects on Stokes and anti-Stokes luminescence of double-perovskite (Ba,Sr)2CaMoO6: Yb3+,Eu3+

Journal of Applied Physics - Tập 110 Số 1 - 2011
Shi Ye1, Yajie Li1, Dechao Yu1, Zhongmin Yang1, Qinyuan Zhang1
1MOE Key Lab of Specially Functional Materials and Institute of Optical Communication Materials, South China University of Technology , Guangzhou 510641, People’s Republic of China

Tóm tắt

This paper deals with the investigation of structural effects on Stokes and anti-Stokes luminescence properties of double-perovskite (Ba,Sr)2CaMoO6: Eu3+,Yb3+. It is found that the tilting of the (Ca/Mo)O6 octahedra framework favors energy transfer from the MoO6 group to Eu3+/Yb3+ at the B site for Stokes luminescence processes, in which the structural connectivity angle ∠Mo–O–Eu/Yb is slightly smaller than 180°. While Eu3+/Yb3+ at the A site with a structural connectivity angle ∠Mo–O–Eu/Yb of around 90° least benefits the energy transfer. The linear connectivity of Yb–O–Mo–O–Eu with or without tilting of the (Ca/Mo)O6 framework for Eu3+ and Yb3+ at the B site strongly restrains the anti-Stokes luminescence. Whereas, it shows normal anti-Stokes luminescence for Eu3+ or Yb3+ at the A site and Yb3+ or Eu3+ at the B site with ∠Yb–O–Eu of around 90°. This research may open up promising new perspectives for designing novel luminescent materials with high efficiency.

Từ khóa


Tài liệu tham khảo

2000, Adv. Mater., 12, 527, 10.1002/(SICI)1521-4095(200004)12:7<>1.0.CO;2-C

2010, Mater. Sci. Eng. R, 71, 1, 10.1016/j.mser.2010.07.001

2008

2004, Chem. Rev., 104, 139, 10.1021/cr020357g

1953, J. Chem. Phys., 21, 836, 10.1063/1.1699044

1966, J. Phys. Chem. Solids, 27, 1587, 10.1016/0022-3697(66)90236-8

1966, J. Chem. Phys., 45, 2350, 10.1063/1.1727945

1966, J. Chem. Phys., 45, 2356, 10.1063/1.1727946

2008, Appl. Phys. B, 91, 551, 10.1007/s00340-008-3028-0

2008, J. Electrochem. Soc., 155, J148, 10.1149/1.2898897

2004, Chem. Eur. J., 10, 4735, 10.1002/chem.v10:19

2005, Opt. Mater., 27, 1111, 10.1016/j.optmat.2004.10.021

2009, Opt. Express, 17, 235, 10.1364/OE.17.000235

2011, J. Mater. Chem., 21, 1387, 10.1039/c0jm01652g

2010, Prog. Mater. Sci, 55, 353, 10.1016/j.pmatsci.2009.10.001

2010, J. Appl. Phys., 108, 083528, 10.1063/1.3490621

2009, J. Mater. Chem., 19, 7088, 10.1039/b906954b

2009, Adv. Mater., 21, 3073, 10.1002/adma.200802220

2008, J. Phys. Chem. C, 112, 16651, 10.1021/jp8046505

2009, J. Phys. Chem. C, 113, 12195, 10.1021/jp901711g

2010, Opt. Mater., 32, 913, 10.1016/j.optmat.2010.01.023

2009, Spectrosc. Spect. Anal., 29, 2317

1951, Acta Crystallogr., 4, 503, 10.1107/S0365110X51001719

2005, J. Solid State Chem., 178, 153, 10.1016/j.jssc.2004.10.035

2005, Phys. Rev. B, 71, 214307, 10.1103/PhysRevB.71.214307

2007, J. Lumin., 124, 10, 10.1016/j.jlumin.2006.01.355