Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays

Journal of Experimental Biology - Tập 206 Số 14 - Trang 2409-2429 - 2003
Richard O. Prum1, Rodolfo H. Torres2
1Department of Ecology and Evolutionary Biology, and Natural History Museum, Dyche Hall, University of Kansas, Lawrence, KS 66045-7561,USA
2Department of Mathematics, University of Kansas, Lawrence, KS 66045-2142, USA

Tóm tắt

SUMMARYStructural colours of avian skin have long been hypothesized to be produced by incoherent (Rayleigh/Tyndall) scattering. We investigated the colour,anatomy, nanostructure and biophysics of structurally coloured skin,ramphotheca and podotheca from 31 species of birds from 17 families in 10 orders from across Aves. Integumentary structural colours of birds include ultraviolet, dark blue, light blue, green and yellow hues. The discrete peaks in reflectance spectra do not conform to the inverse fourth power relationship predicted by Rayleigh scattering. The dermis of structurally coloured skin consists of a thick (100–500 μm) layer of collagen that is usually underlain by a layer of melanin granules. Transmission electron micrographs(TEMs) of this colour-producing dermal collagen layer revealed quasi-ordered arrays of parallel collagen fibres. Two-dimensional (2-D) Fourier analysis of TEMs of the collagen arrays revealed a ring of peak spatial frequencies in the spatial variation in refractive index that are the appropriate size to make the observed ultraviolet–yellow colours by coherent scattering alone. One species, Philepitta castanea (Eurylaimidae), has exceptionally ordered, hexagonal arrays of collagen fibres that produce a hexagonal pattern of spatial frequency peaks in the power spectra. Ultraviolet, blue, green and yellow structural colours of avian skin are produced by coherent scattering(i.e. constructive interference) by arrays of collagen fibres in the dermis. Some yellow and orange skin colours are produced with a combination of structural and pigmentary mechanisms. These combined colours can have reflectance spectra with discrete peaks that are more saturated than hues produced by carotenoid pigments alone. Bluish facial skin from two species of Neotropical antbirds (Thamnophilidae) are nanostructurally too small to produce visible light by coherent scattering, and the colour production mechanism in these species remains unknown. Based on the phylogenetic distribution of structurally coloured skin in Aves, this mechanism of colour production has evolved convergently more than 50 independent times within extant birds.

Từ khóa


Tài liệu tham khảo

Auber, L. (1957). The distribution of structural colors and unusual pigments in the Class Aves. Ibis99,463-476.

Bagnara, J. T. (1998). Comparative anatomy and physiology of pigment cells in nonmammalian tissues. In The Pigmentary System – Physiology and Pathophysiology (ed. J. J. Nordlund, R. E. Boissy, V. J. Hearing, R. A. King and J. P. Ortonne), pp.9-40. Oxford: Oxford University Press.

Bagnara, J. T. and Hadley, M. E. (1973). Chromatophores and Color Change. New Jersey: Prentice Hall.

Bellairs, R., Harkness, M. L. and Harkness, R. D.(1975). The structure of the tapetum of the eye of the sheep. Cell Tissue Res.157,73-91.

Benedek, G. B. ( 1971). Theory of transparency of the eye. Appl. Optics10,459-473.

Bohren, C. F. and Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. New York: John Wiley & Sons.

Briggs, W. L. and Henson, V. E. ( 1995). The DFT. Philadelphia: Society for Industrial and Applied Mathematics.

Burkhardt, D. ( 1989). UV vision: a bird's eye view of feathers. J. Comp. Physiol. A164,787-796.

Camichel, C and Mandoul, H. ( 1901). Des colorations bleue et verte de la peau des Vertébrés. Compte Rendu Seances Acad. Sci.133,826-828.

Derim-Oglu, E. N. ( 1994). Small passerines can discriminate ultraviolet surface colours. Vision Res.34,1535-1539.

Endler, J. A. ( 1993). The color of light in forests and its implications. Ecol. Monogr.61, 1-27.

Ferris, W. and Bagnara, J. T. (1972). Reflecting pigment cells in the dove iris. In Pigmentation: Its Genesis and Biological Control (ed. V. Riley), pp.181-192. New York:Appleton-Century-Crofts.

Finger, E. (1995). Visible and UV coloration in birds: Mie scattering as the basis of color production in many bird feathers. Naturwissenschaften82,570-573.

Fox, D. L. (1976). Animal Biochromes and Structural Colors. Berkeley: University of California Press.

Frith, C. B. and Beehler, B. M. (1998). The Birds of Paradise. Oxford: Oxford University Press.

Ghiradella, H. (1991). Light and colour on the wing: structural colours in butterflies and moths. Appl. Optics30,3492-3500.

Gisselberg, M., Clark, J. I., Vaezy, S. and Osgood, T.(1991). A quantitative evaluation of Fourier components in transparent and opaque calf cornea. Am. J. Anat.191,408-418.

Hart, N. S. (2001). The visual ecology of avian photoreceptors. Prog. Ret. Eye Res.20,675-703.

Hays, H. and Habermann, H. ( 1969). Note on bill color of the ruddy duck, Oxyura jamaicensis rubida. Auk86,765-766.

Hecht, E. (1987). Optics. Reading, MA: Addison-Wesley Publishing.

Herring, P. J. ( 1994). Reflective systems in aquatic animals. Comp. Biochem. Physiol. A109,513-546.

Huxley, A. F. ( 1968). A theoretical treatment of the reflexion of light by multilayer structures. J. Exp. Biol.48,227-245.

Jacobs, G. H. ( 1992). Ultraviolet vision in vertebrates. Am. Zool.32,544-554.

Land, M. F. ( 1972). The physics and biology of animal reflectors. Prog. Biophys. Mol. Biol.24, 77-106.

Lee, D. W. ( 1991). Ultrastructural basis and function of iridescent blue colour of fruits in Elaeocarpus. Nature349,260-262.

Lee, D. W. ( 1997). Iridescent Blue Plants. Am. Sci.85,56-63.

Leonard, D. W. and Meek, K. M. (1997). Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma. Biophys. J.72,1382-1387.

Lucas, A. M. and Stettenheim, P. R. (1972). Avian Anatomy – Integument. Washington, DC: U.S. Department of Agriculture.

Mandoul, H. ( 1903). Recherches sur les colorations tégumentaires. Annal Sci Natur B. Zool. 8 Ser., 18,225-463.

Mason, C. W. ( 1923). Structural colors of feathers. I. J. Phys. Chem.27,201-251.

MATLAB ( 1992). MATLAB Reference Guide. Natick: The Mathworks, Inc.

Maurice, D. M. ( 1984). The cornea and sclera. In The Eye (ed. H. Davson), pp.1-158. New York: Academic Press.

Menon, G. K. and Menon, J. ( 2000). Avian epidermal lipids: functional considerations and relationship to feathering. Am. Zool.40,540-552.

Murie, J. (1872). Cranial appendages and wattles of the horned tragopan. Proc. Zool. Soc. Lond.1872,730-736.

Nassau, K. ( 1983). The Physics and Chemistry of Color. New York: John Wiley & Sons.

Neville, A. C. ( 1975). Biology of the Arthropod Cuticle. New York: Springer-Verlag.

Neville, A. C. ( 1993). Biology of Fibrous Composites. Cambridge: Cambridge University Press.

Oehme, H. ( 1969). Vergleichende Untersuchungenüber die Farbung der Vogeliris. Biologische Zentralblatt88,3-35.

Oliphant, L. W. ( 1981). Crystalline pteridines in the stromal pigment cells of the iris of the great horned owl. Cell Tissue Res.217,387-395.

Oliphant, L. W. ( 1987a). Observations on the pigmentation of the pigeon iris. Pigment Cell Res.1, 202-208.

Oliphant, L. W. ( 1987b). Pteridines and purines as major pigments of the avian iris. Pigment Cell Res.1, 129-131.

Oliphant, L. W. and Hudon, J. ( 1993). Pteridines as reflecting pigments and components of reflecting organelles in vertebrates. Pigment Cell Res.6, 205-208.

Oliphant, L. W., Hudon, J. and Bagnara, J. T.( 1992). Pigment cell refugia in homeotherms – the unique evolutionary position of the iris. Pigment Cell Res.5,367-371.

Osorio, D. and Ham, A. D. ( 2002). Spectral reflectance and directional properties of structural coloration in bird plumage. J. Exp. Biol.205,2017-2027.

Parker, A. R. ( 1999). Invertebrate structural colours. In Functional Morphology of the Invertebrate Skeleton (ed. E. Savazzi). pp. 65-90. London: John Wiley & Sons.

Prum, R. O., Morrison, R. L. and Ten Eyck, G. R.( 1994). Structural color production by constructive reflection from ordered collagen arrays in a bird (Philepitta castanea: Eurylaimidae). J. Morphol.222, 61-72.

Prum, R. O. and Razafindratsita, V. R. ( 1997). Lek behavior and natural history of the velvet asity Philepitta castanea (Eurylaimidae). Wilson Bull.109,371-392.

Prum, R. O., Rice, N. H., Mobley, J. A. and Dimmick, W. W.( 2000). A preliminary phylogenetic hypothesis for the cotingas (Cotingidae) based on mitochondrial DNA. Auk117,236-241.

Prum, R. O., Torres, R. H., Kovach, C., Williamson, S. and Goodman, S. M. ( 1999a). Coherent light scattering by nanostructured collagen arrays in the caruncles of the Malagasy asities(Eurylaimidae: Aves). J. Exp. Biol.202,3507-3522.

Prum, R. O., Torres, R. H., Williamson, S. and Dyck, J.( 1998). Coherent light scattering by blue feather barbs. Nature396,28-29.

Prum, R. O., Torres, R. H., Williamson, S. and Dyck, J.( 1999b). Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs. Proc. R. Soc. Lond. Ser. B. Biol. Sci.266,13-22.

Rawles, M. E. ( 1960). The integumentary system. In Biology and Comparative Physiology of Birds, vol.1 (ed. A. J. Marshall), pp.189-240. New York: Academic Press.

Schneider, A. ( 1938). Bau und erektion der hautlappen von Lobiophasis bulweri Sharpe. J. Ornithol.86,5-8.

Schorger, A. W. ( 1966). The Wild Turkey; Its History and Domestication. Norman, OK: University of Oklahoma Press.

Srinivasarao, M. ( 1999). Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem. Rev.99,1935-1961.

Tièche, M. ( 1906). Über benigne melanome (“Chromatophore”) der Haut – “blaue Naevi”. Virch. Arch. Pathol. Anat. Physiol.186,216-229.

Vaezy, S. and Clark, J. I. ( 1991). A quantitative analysis of transparency in the human sclera and cornea using Fourier methods. J. Microsc.163, 85-94.

Vaezy, S. and Clark, J. I. (1993). Quantitative analysis of the microstructure of the human cornea and sclera using 2-D Fourier methods. J. Microsc.175, 93-99.

van de Hulst, H. C. ( 1981). Light Scattering by Small Particles. New York: Dover.

Vorobyev, M and Osorio, D. (1998). Receptor noise as a determinant of colour thresholds. Proc. R. Soc. Lond. Ser. B. Biol. Sci.265,351-358.

Young, A. T. ( 1982). Rayleigh Scattering. Phys. Today35,42-48.