Structural and optical properties of titanium aluminum nitride films (Ti1−xAlxN)

Andreas Schüler1, V. Thommen1, Peter Reimann1, Peter Oelhafen1, G. Francz2, Thomas Zehnder2, Marcel Düggelin3, Daniel Mathys3, R. Guggenheim3
1Institut für Physik der Universität Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
2EMPA Dübendorf, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
3SEM Laboratory, University of Basel, Bernoullistrasse 32, CH-4056 Basel, Switzerland

Tóm tắt

Titanium aluminum nitride films (Ti1−xAlxN) have been deposited by reactive magnetron cosputtering. Elemental compositions of these films have been determined by core level photoelectron spectroscopy. Scanning electron microscopy reveals a columnar film growth. This is also reflected by the topography of film surfaces as studied by atomic force microscopy. By x-ray diffraction a crystalline atomic structure is revealed. Single phase samples can be obtained, consisting of the substitutional solid solution (Ti, Al)N. Crystallites show preferential orientation. The optical properties of these films have been investigated by spectrophotometry in the UV-VIS-NIR wavelength range. Depending on the elemental composition, the optical constants vary from metallic to dielectric behavior. For film compositions with x<0.5 typical features are a tunable transmission maximum and reflection minimum in the visible spectral range, a high infrared reflection, and a low infrared absorption. Due to these optical properties, Ti1−xAlxN films are promising candidates for applications such as coatings for solar control windows and optical selective solar absorbers.

Từ khóa


Tài liệu tham khảo

1986, J. Vac. Sci. Technol. A, 4, 2717, 10.1116/1.573713

1987, J. Vac. Sci. Technol. A, 5, 2173, 10.1116/1.574948

1987, Thin Solid Films, 153, 55, 10.1016/0040-6090(87)90169-6

1983, Surf. Coat. Technol., 33, 117

1990, J. Appl. Phys., 67, 1542, 10.1063/1.345664

1985, J. Mater. Sci. Lett., 4, 251, 10.1007/BF00719782

1984, J. Vac. Sci. Technol. B, 2, 781, 10.1116/1.582879

1987, J. Solid State Chem., 70, 318, 10.1016/0022-4596(87)90071-5

1987, J. Solid State Chem., 68, 124, 10.1016/0022-4596(87)90293-3

1988, J. Vac. Sci. Technol. B, 6, 2158

1993, Surf. Coat. Technol., 59, 187, 10.1016/0257-8972(93)90081-X

1997, J. Phys. IV, 7, C2

1996, Thin Solid Films, 290–291, 339

1999, Appl. Phys. Lett., 75, 630, 10.1063/1.124463

1998, Sol. Energy Mater. Sol. Cells, 54, 19, 10.1016/S0927-0248(97)00219-5

1972, Phys. Rev. B, 5, 4709, 10.1103/PhysRevB.5.4709

1976, J. Electron Spectrosc. Relat. Phenom., 8, 129, 10.1016/0368-2048(76)80015-1

1979, Surf. Interface Anal., 1, 2, 10.1002/sia.740010103

1998, Thin Solid Films, 332, 16, 10.1016/S0040-6090(98)01020-7

1999, J. Appl. Phys., 86, 346, 10.1063/1.370736

1998, Sol. Energy Mater. Sol. Cells, 54, 39, 10.1016/S0927-0248(97)00221-3