Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation

Nature Communications - Tập 11 Số 1
Donghyun Ka1, Hyejin Oh1, Eunyoung Park1, Jeong‐Han Kim1, Euiyoung Bae1
1Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea

Tóm tắt

AbstractThe intense arms race between bacteria and phages has led to the development of diverse antiphage defense systems in bacteria. Unlike well-known restriction-modification and CRISPR-Cas systems, recently discovered systems are poorly characterized. One such system is the Thoeris defense system, which consists of two genes, thsA and thsB. Here, we report structural and functional analyses of ThsA and ThsB. ThsA exhibits robust NAD+ cleavage activity and a two-domain architecture containing sirtuin-like and SLOG-like domains. Mutation analysis suggests that NAD+ cleavage is linked to the antiphage function of Thoeris. ThsB exhibits a structural resemblance to TIR domain proteins such as nucleotide hydrolases and Toll-like receptors, but no enzymatic activity is detected in our in vitro assays. These results further our understanding of the molecular mechanism underlying the Thoeris defense system, highlighting a unique strategy for bacterial antiphage resistance via NAD+ degradation.

Từ khóa


Tài liệu tham khảo

Ofir, G. & Sorek, R. Contemporary phage biology: from classic models to new insights. Cell 172, 1260–1270 (2018).

Summers, W. C. In the beginning. Bacteriophage 1, 50–51 (2011).

Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2004).

Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).

Rostol, J. T. & Marraffini, L. (ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe 25, 184–194 (2019).

Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

Dy, R. L., Richter, C., Salmond, G. P. & Fineran, P. C. Remarkable mechanisms in microbes to resist phage infections. Annu. Rev. Virol. 1, 307–331 (2014).

Tock, M. R. & Dryden, D. T. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005).

Hille, F. et al. The biology of CRISPR-Cas: backward and forward. Cell 172, 1239–1259 (2018).

Petty, N. K., Evans, T. J., Fineran, P. C. & Salmond, G. P. Biotechnological exploitation of bacteriophage research. Trends Biotechnol. 25, 7–15 (2007).

Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

Goldfarb, T. et al. Brex is a novel phage resistance system widespread in microbial genomes. EMBO J. 34, 169–183 (2015).

Ofir, G. et al. Disarm is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol 3, 90–98 (2018).

Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359 eaar4120 (2018).

Cohen, D. et al. Cyclic gmp-amp signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

North, B. J. & Verdin, E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 5, 224 (2004).

Karras, G. I. et al. The macro domain is an ADP-ribose binding module. EMBO J. 24, 1911–1920 (2005).

Greiss, S. & Gartner, A. Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol. Cells 28, 407–415 (2009).

Starai, V. J., Celic, I., Cole, R. N., Boeke, J. D. & Escalante-Semerena, J. C. Sir2-dependent activation of acetyl-coa synthetase by deacetylation of active lysine. Science 298, 2390–2392 (2002).

Aravind, L. The wwe domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem. Sci. 26, 273–275 (2001).

Rack, J. G., Perina, D. & Ahel, I. Macrodomains: structure, function, evolution, and catalytic activities. Annu. Rev. Biochem. 85, 431–454 (2016).

Spear, A. M., Loman, N. J., Atkins, H. S. & Pallen, M. J. Microbial TIR domains: not necessarily agents of subversion? Trends Microbiol. 17, 393–398 (2009).

Essuman, K. et al. Tir domain proteins are an ancient family of NAD(+)-consuming enzymes. Curr. Biol. 28, 421–430.e4 (2018).

Essuman, K. et al. The sarm1 toll/interleukin-1 receptor domain possesses intrinsic NAD(+) cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343.e5 (2017).

Du, J., Jiang, H. & Lin, H. Investigating the ADP-ribosyltransferase activity of sirtuins with nad analogues and 32p-NAD. Biochemistry 48, 2878–2890 (2009).

Zhou, Y. et al. Determining the extremes of the cellular NAD(h) level by using an Escherichia coli NAD(+)-auxotrophic mutant. Appl. Environ. Microbiol. 77, 6133–6140 (2011).

Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

Burroughs, A. M., Zhang, D., Schaffer, D. E., Iyer, L. M. & Aravind, L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res. 43, 10633–10654 (2015).

Min, J., Landry, J., Sternglanz, R. & Xu, R. M. Crystal structure of a Sir2 homolog-NAD complex. Cell 105, 269–279 (2001).

Sanders, B. D., Zhao, K., Slama, J. T. & Marmorstein, R. Structural basis for nicotinamide inhibition and base exchange in Sir2 enzymes. Mol. Cell 25, 463–472 (2007).

Sauve, A. A., Wolberger, C., Schramm, V. L. & Boeke, J. D. The biochemistry of sirtuins. Annu. Rev. Biochem. 75, 435–465 (2006).

Horsefield, S. et al. NAD(+) cleavage activity by animal and plant tir domains in cell death pathways. Science 365, 793–799 (2019).

Wan, L. et al. Tir domains of plant immune receptors are NAD(+)-cleaving enzymes that promote cell death. Science 365, 799–803 (2019).

Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with dalilite v.3. Bioinformatics 24, 2780–2781 (2008).

Sikowitz, M. D., Cooper, L. E., Begley, T. P., Kaminski, P. A. & Ealick, S. E. Reversal of the substrate specificity of cmp n-glycosidase to DCMP. Biochemistry 52, 4037–4047 (2013).

Kurakawa, T. et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652–655 (2007).

Samanovic, M. I. et al. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide. Mol. Cell 57, 984–994 (2015).

Mortier-Barriere, I. et al. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 130, 824–836 (2007).

Fischer, K. et al. Function and structure of the molybdenum cofactor carrier protein from chlamydomonas reinhardtii. J. Biol. Chem. 281, 30186–30194 (2006).

Brzozowski, R. S. et al. Deciphering the role of a slog superfamily protein ypsa in gram-positive bacteria. Front. Microbiol. 10, 623 (2019).

Pajuelo, D. et al. NAD(+) depletion triggers macrophage necroptosis, a cell death pathway exploited by Mycobacterium tuberculosis. Cell Rep. 24, 429–440 (2018).

Tang, J. Y., Bullen, N. P., Ahmad, S. & Whitney, J. C. Diverse nadase effector families mediate interbacterial antagonism via the type VI secretion system. J. Biol. Chem. 293, 1504–1514 (2018).

Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. Sarm1 activation triggers axon degeneration locally via NAD(+) destruction. Science 348, 453–457 (2015).

Mark, B. L. et al. Crystallographic evidence for substrate-assisted catalysis in a bacterial beta-hexosaminidase. J. Biol. Chem. 276, 10330–10337 (2001).

Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Method Enzymol. 276, 307–326 (1997).

Adams, P. D. et al. Phenix: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

Chen, V. B. et al. Molprobity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).