Structural and Chemical Evolution of the Near-Apex Region of an Atomic Force Microscope Tip Subject to Sliding
Tóm tắt
Atomic force microscopy and molecular dynamics simulation are used to study the nanoscale wear of a silicon dioxide tip sliding on a copper substrate. Wear is characterized in terms of structural and chemical evolution of the system where the latter is possible experimentally using atom probe tomography of the slid tips. Comparison of the experimentally observed and simulation-predicted wear reveals that adhesive wear is dominant in the short sliding distances of the simulation at any applied load, while the sliding distances in the experiments are long enough to observe load-induced transitions between adhesive-dominated and abrasive-dominated wear.
Tài liệu tham khảo
Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101(12), 125501 (2008)
Liu, J., Notbohm, J.K., Carpick, R.W., Turner, K.T.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano 4(7), 3763–3772 (2010)
Jacobs, T.D., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108–112 (2013)
Tambe, N., Bhushan, B.: Nanowear mapping: a novel atomic force microscopy based approach for studying nanoscale wear at high sliding velocities. Tribol. Lett. 20(1), 83–90 (2005)
M’ndange-Pfupfu, A., Ciston, J., Eryilmaz, O., Erdemir, A., Marks, L.D.: Direct observation of tribochemically assisted wear on diamond-like carbon thin films. Tribol. Lett. 49(2), 351–356 (2013)
Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A 31(3), 030801 (2013)
Fang, T.H., Weng, C.I.: Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale. Nanotechnology 11(3), 148–153 (2000)
Mulliah, D., Kenny, S., Smith, R., Sanz-Navarro, C.: Molecular dynamic simulations of nanoscratching of silver (100). Nanotechnology 15(3), 243–249 (2004)
Zhong, J., Shakiba, R., Adams, J.B.: Molecular dynamics simulation of severe adhesive wear on a rough aluminum substrate. J. Phys. D Appl. Phys. 46(5), 055307 (2013)
Tourek, C.J., Sundararajan, S.: Study of atomic force microscopy probes using a local electrode atom probe microscope. Microsc. Microanal. 15(2), 290–291 (2009)
Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39(8), 5566–5568 (1989)
Munetoh, S., Motooka, T., Moriguchi, K., Shintani, A.: Interatomic potential for Si-O systems using Tersoff parameterization. Comput. Mater. Sci. 39(2), 334–339 (2007)
Daw, M.S., Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)
Adams, J., Foiles, S., Wolfer, W.: Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the embedded atom method. J. Mater. Res. 4(01), 102–112 (1989)
Gong, H., Lu, W., Wang, L., Li, G., Zhang, S.: The effects of substrate size and temperature on the deposition of Cu clusters on a Si substrate. J. Appl. Phys. 112(2), 024903 (2012)
Hwang, H.J., Kwon, O.K., Kang, J.W.: Copper nanocluster diffusion in carbon nanotube. Solid State Commun. 129(11), 687–690 (2004)
Gamache, R.R., Fischer, J.: Half-widths of H 2 16 O, H 2 18 O, H 2 17 O, H D 16 O, and D 2 16 O: I. Comparison between isotopomers. J. Quant. Spectrosc. Radiat. Transf. 78(3), 289–304 (2003)
Sader, J.E., Chon, J.W., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999)
Tourek, C.J., Sundararajan, S.: An alternative method to determining optical lever sensitivity in atomic force microscopy without tip-sample contact. Rev. Sci. Instrum. 81(7), 073711 (2010)
Bykov, V., Gologanov, A., Shevyakov, V.: Test structure for SPM tip shape deconvolution. Appl. Phys. A Mater. Sci. Process. 66(5), 499–502 (1998)
Villarrubia, J.: Algorithm for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stand. Technol. 102, 425–454 (1997)
Williams, P., Shakesheff, K., Davies, M., Jackson, D., Roberts, C., Tendler, S.: Blind reconstruction of scanning probe image data. J. Vac. Sci. Technol. B 14(2), 1557–1562 (1996)
Miller, M.K., Miller, M.K.: Atom probe tomography: analysis at the atomic level. Kluwer Academic/Plenum Publishers, New York (2000)
Kelly, T.F., Miller, M.K.: Invited review article: atom probe tomography. Rev. Sci. Instrum. 78(3), 031101 (2007)
Seidman, D.N.: Three-dimensional atom-probe tomography: advances and applications. Annu. Rev. Mater. Res. 37, 127–158 (2007)
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D., Gorman, B.P.: Atom probe tomography of electronic materials. Annu. Rev. Mater. Res. 37, 681–727 (2007)
Danoix, F., Auger, P.: Atom probe studies of the Fe–Cr system and stainless steels aged at intermediate temperature: a review. Mater. Charact. 44(1), 177–201 (2000)
Sundararajan, S., Bhushan, B.: Micro/nanotribology of ultra-thin hard amorphous carbon coatings using atomic force/friction force microscopy. Wear 225, 678–689 (1999)
Degiampietro, K., Colaco, R.: Nanoabrasive wear induced by an AFM diamond tip on stainless steel. Wear 263(7), 1579–1584 (2007)
Zhao, X., Bhushan, B.: Material removal mechanisms of single-crystal silicon on nanoscale and at ultralow loads. Wear 223(1), 66–78 (1998)
Chung, K.H., Kim, D.E.: Fundamental investigation of micro wear rate using an atomic force microscope. Tribol. Lett. 15(2), 135–144 (2003)
Lhymn, C., Light, R.: Effect of sliding velocity on wear rate of fibrous polymer composites. Wear 116(3), 343–359 (1987)
Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5(3), 181–185 (2010)
Kitsunai, H., Kato, K., Hokkirigawa, K., Inoue, H.: The transitions between microscopic wear modes during repeated sliding friction observed by a scanning electron microscope tribosystem. Wear 135(2), 237–249 (1990)
Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53(2), 314–326 (1975)
Sheehan, P.: The wear kinetics of NaCl under dry nitrogen and at low humidities. Chem. Phys. Lett. 410(13), 151–155 (2005)
Park, N.S., Kim, M.W., Langford, S., Dickinson, J.: Atomic layer wear of single-crystal calcite in aqueous solution using scanning force microscopy. J. Appl. Phys. 80(5), 2680–2686 (1996)
Jacobs, T.D., Gotsmann, B., Lantz, M.A., Carpick, R.W.: On the application of transition state theory to atomic-scale wear. Tribol. Lett. 39(3), 257–271 (2010)
Dearnaley, G.: Adhesive, abrasive and oxidative wear in ion-implanted metals. Mater. Sci. Eng. 69(1), 139–147 (1985)
d’ Acunto, M.: Theoretical approach for the quantification of wear mechanisms on the nanoscale. Nanotechnology 15(7), 795–801 (2004)
Hokkirigawa, K., Kato, K.: An experimental and theoretical investigation of plowing, cutting and wedge formation during abrasive wear. Tribol. Int. 21(1), 51–57 (1988)