Structural Symmetry and Protein Function

Annual Reviews - Tập 29 Số 1 - Trang 105-153 - 2000
David S. Goodsell1, Arthur J. Olson1
1Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037

Tóm tắt

▪ Abstract  The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of any symmetry.

Từ khóa


Tài liệu tham khảo

10.1038/370621a0

10.1038/224491a0

10.1038/340609a0

10.1002/pro.5560041202

10.1006/jsbi.1997.3942

10.1006/jsbi.1998.4039

10.1016/S0065-3233(08)60143-6

10.1073/pnas.93.25.14243

10.1016/0005-2728(93)90063-L

10.1016/0022-2836(78)90285-1

Caspar DLD. 1966. Design and assembly of organized biological structure. Molecular Architecture in Cell Physiology, Symp. Soc. Gen. Physiol., pp. 191–207. New York: Prentice Hall

10.1101/SQB.1962.027.001.005

Chothia C, 1991, CIBA Found. Symp., 162, 36

10.1038/256705a0

Clegg JS, 1984, Am. J. Physiol., 246, R133

Cornish-Bowden AJ, 1971, J. Biol. Chem., 246, 3092, 10.1016/S0021-9258(18)62200-8

Crane HR, 1950, Sci. Monthly, 376

10.1038/177473a0

Crick FHC, Watson JD. 1957. Virus structure: general principles. CIBA Found. Symp. “The Nature of Viruses”, pp. 5–13. Boston: Little, Brown

10.1016/0019-2791(72)90097-3

10.1016/0968-0004(80)90146-2

10.1126/science.1549776

10.1016/0959-440X(91)90178-V

10.1016/0092-8674(82)90231-8

10.1126/science.283.5398.80

10.1073/pnas.93.25.14229

10.1016/0968-0004(91)90083-8

10.1016/0968-0004(93)90153-E

10.1021/bi00454a013

Greenbury CL, 1965, Immunology, 8, 420

10.1038/26694

10.1038/386463a0

10.1016/0022-2836(66)90149-5

Hargittai I, 1995, Symmetry through the Eyes of a Chemist.

10.1038/276368a0

10.1073/pnas.75.10.4779

10.1016/S0092-8674(00)80069-0

10.1016/0889-1605(85)90123-5

10.1016/0022-5193(77)90282-X

10.1080/00018737500101481

10.1038/nsb0394-176

10.1006/jmbi.1997.1068

10.1073/pnas.93.1.13

10.1006/jmbi.1996.0456

10.1016/0022-2836(79)90199-2

10.1111/j.1432-1033.1990.tb15568.x

10.1016/S0960-9822(95)00247-8

10.1126/science.155.3763.697

10.1016/B978-0-12-516301-9.50009-7

10.1146/annurev.bi.39.070170.000325

Klug A. 1968. Point groups and the design of aggregates. Nobel Symp. “Symmetry and Function of Biological Systems at the Macromolecular Level” 11th, Stockholm, pp. 425–36. Wiley & Sons, New York

10.1126/science.1377403

10.1016/0092-8674(92)90445-I

Koshland DE, 1976, Fed. Proc., 35, 2104

10.1021/bi00865a047

10.1016/0092-8674(94)90014-0

10.1146/annurev.ge.26.120192.000333

10.1126/science.270.5234.293

10.1016/0022-2836(88)90128-3

10.1016/S0969-2126(98)00044-6

Lewis MS, 1986, J. Biol. Chem., 261, 11571, 10.1016/S0021-9258(18)67281-3

10.1038/354278a0

Lipscomb WN, 1991, CHEMTRACTS-Biochem. Mol. Biol., 2, 1

10.1126/science.7725097

10.1002/bip.1970.360091002

10.1016/0968-0004(91)90039-X

10.1016/S0959-440X(96)80013-3

10.1016/S0969-2126(01)00207-6

10.1038/312237a0

10.1146/annurev.cb.04.110188.002523

Monod J. 1968. On symmetry and function in biological systems. Nobel Symp. Symmetry Funct. Biol. Syst. Macromol. Lev., 11th, Stockholm,pp. 15–27. New York: Wiley

10.1016/S0022-2836(65)80285-6

Moras D, 1975, J. Biol. Chem., 250, 9137, 10.1016/S0021-9258(19)40703-5

10.1016/S0022-2836(83)80314-3

Parker J, 1989, Microbiol. Rev., 53, 273, 10.1128/mr.53.3.273-298.1989

10.1039/df9531300170

10.1016/S0022-2836(77)80064-8

10.1038/32703

10.1017/S0033583500003826

Reed LJ, 1990, J. Biol. Chem., 265, 8971, 10.1016/S0021-9258(19)38795-2

10.1111/j.1432-1033.1985.tb09231.x

10.1016/0042-6822(84)90267-8

10.3109/10409237409105448

10.1126/science.3589666

10.1038/351371a0

10.1016/0968-0004(81)90003-7

10.1016/0968-0004(84)90221-4

Stossel TP, 1989, J. Biol. Chem., 264, 18261, 10.1016/S0021-9258(18)51454-X

10.1073/pnas.93.8.3330

10.1038/123871a0

10.1146/annurev.bi.56.070187.001445

10.1002/j.1460-2075.1996.tb00858.x

10.1139/m93-066

10.1146/annurev.bi.62.070193.002551

10.1073/pnas.93.25.14249

10.1002/pro.5560070117

10.1038/41944

10.1006/jmbi.1997.1149

10.1002/j.1460-2075.1994.tb06349.x

10.1006/jmbi.1995.0456

Protein Data Bank accession codes for structures used in the figures.