Structural Properties of GaN Films Grown by Molecular Beam Epitaxy on Singular and Vicinal 6H-SiC(0001)
Tóm tắt
Gallium nitride films are grown by plasma-assisted molecular beam epitaxy (MBE) on 6H-SiC(0001) substrates with no miscut and with 3.5° miscuts in both the
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaig
% dacaaMc8UaaGPaVlqaigdagaqeaiaaykW7caaMc8UaaGimaiaaykW7
% caaMc8UaaGimaiaac2faaaa!43FA!
$$[1\,\,\bar 1\,\,0\,\,0]$$
and
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaig
% dacaaMc8UaaGPaVlaaigdacaaMc8UaaGPaVlqaikdagaqeaiaaykW7
% caaMc8UaaGimaiaac2faaaa!43FC!
$$[1\,\,1\,\,\bar 2\,\,0]$$
directions. The hydrogen-etched substrates display straight or chevron shaped steps, respectively, and the same morphology is observed on the GaN films. X-ray rocking curves display substantially reduced width for films on the vicinal substrates compared to singular substrates, for the same Ga/N flux ratio used during growth.
Tài liệu tham khảo
V Ramachandran, AR Smith, RM Feenstra, J. Vac. Sci. Technol. A 17, 1289–1293 (1999).
V. M. Torres, J. L. Edwards, B. J. Wilkens, D. J. Smith, R. B. Doak, I. S. T. Tsong, Appl. Phys. Lett. 74, 985 (1999).
Q. Z. Xue, Q. K. Xue, Y. Hasegawa, I. S. T. Tsong, T. Sakurai, Appl. Phys. Lett. 74, 2468 (1999).
R. Lantier, A. Rizzi, D. Guggi, H. Luth, B. Neubauer, D. Gerthsen, S. Frabboni, G. Coli, R. Cingolani, MRS Internet J. Nitride Semicond. Res. 4S1, G3.50 (1999).
O. Brandt, R. Muralidharan, P. Waltereit, A. Thamm, A. Trampert, H. von Kiedrowski, K. H. Ploog, Appl. Phys. Lett. 75, 4019 (1999).
M. H. Xie, L. X. Zheng, S. H. Cheung, Y. F. Ng, H. Wu, S. Y. Tong, N. Ohtani, Appl. Phys. Lett. 77, 1105 (2000).
C. D. Lee, V. Ramachandran, A. Sagar, R. M. Feenstra, D. W. Greve, W. L. Sarney, L. Salamanca-Riba, D. C. Look, S. Bai, W. J. Choyke, R. P. Devaty, J. Electron. Mater. 30, 162 (2001).
V Ramachandran, MF Brady, AR Smith, RM Feenstra, DW Greve, J. Electron. Mater. 27, 308–312 (1998).
A. R. Smith, R. M. Feenstra, D. W. Greve, M. S. Shin, M. Skowronski, J. Neugebauer, J. E. Northrup, Appl. Phys. Lett. 72, 2114–2116 (1998).
C. D. Lee, A. Sagar, R. M. Feenstra, W. L. Sarney, L. Salamanca-Riba, J. W. P. Hsu, Phys. Stat. Sol. A 188, 595 (2001).
A. R. Smith, V. Ramachandran, R. M. Feenstra, D. W. Greve, A. Ptak, T. Myers, W. Sarney, L. Salamanca-Riba, M. Shin, M. Skowronski, MRS Internet J. Nitride Semicond. Res. 3, 12 (1998).
B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert, J. S. Speck, J. Appl. Phys. 88, 1855 (2000).
M. A. Lutz, R. M. Feenstra, P. M. Mooney, J. Tersoff, J. O. Chu, Surf. Sci. Lett 316, L1075 (1994).
C. D. Lee, A. Sagar, R. M. Feenstra, C. K. Inoki, T. S. Kuan, W. L. Sarney, L. Salamanca-Riba, Appl. Phys. Lett. 79, 3248 (2001).
D. Monroe, Y. H. Xie, E. A. Fitzgerald, P. J. Silverman, G. P. Watson, J. Vac. Sci. Technol. B 11, 1731 (1993).