Strongly Correlated Phases in Rapidly Rotating Bose Gases
Tóm tắt
We consider a system of trapped spinless bosons interacting with a repulsive potential and subject to rotation. In the limit of rapid rotation and small scattering length, we rigorously show that the ground state energy converges to that of a simplified model Hamiltonian with contact interaction projected onto the Lowest Landau Level. This effective Hamiltonian models the bosonic analogue of the Fractional Quantum Hall Effect (FQHE). For a fixed number of particles, we also prove convergence of states; in particular, in a certain regime we show convergence towards the bosonic Laughlin wavefunction. This is the first rigorous justification of the effective FQHE Hamiltonian for rapidly rotating Bose gases. We review previous results on this effective Hamiltonian and outline open problems.
Tài liệu tham khảo
Aftalion, A., Blanc, X.: Vortex lattices in rotating Bose–Einstein condensates. SIAM J. Math. Anal. 38, 874–893 (2006)
Aftalion, A., Blanc, X.: Reduced energy functionals for a three-dimensional fast rotating Bose-Einstein condensates. Ann. H. Poincaré 25, 339–355 (2008)
Aftalion, A., Blanc, X., Dalibard, J.: Vortex patterns in a fast rotating Bose-Einstein condensate. Phys. Rev. A 71, 023611 (2005)
Aftalion, A., Blanc, X., Lewin, M.: Unpublished
Aftalion, A., Blanc, X., Nier, F.: Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates. J. Funct. Anal. 241, 661–702 (2006)
Baksmaty, L.O., Yannouleas, C., Landman, U.: Rapidly rotating boson molecules with long- or short-range repulsion: an exact diagonalization study. Phys. Rev. A 75, 023620 (2007)
Bargmann, V.: On the representations of the rotation group. Rev. Mod. Phys. 34, 829 (1962)
Bertsch, G., Papenbrock, T.: Yrast line for weakly interacting trapped bosons. Phys. Rev. Lett. 83, 5412–5414 (1999)
Butts, D.A., Rokhsar, D.S.: Predicted signatures of rotating Bose-Einstein condensates. Nature 397, 327–329 (1999)
Carlen, E.: Some integral identities and inequalities for entire functions and their application to the coherent state transform. J. Funct. Anal. 97, 231–249 (1991)
Cooper, N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)
Cooper, N.R., Komineas, S., Read, N.: Vortex lattices in the lowest Landau level for confined Bose-Einstein condensates. Phys. Rev. A 70, 033604 (2004)
Cooper, N.R., Wilkin, N.K.: Composite fermion description of rotating Bose-Einstein condensates. Phys. Rev. B 60, R16279–R16282 (1999)
Cooper, N.R., Wilkin, N.K., Gunn, J.M.F.: Quantum phases of vortices in rotating Bose-Einstein condensates. Phys. Rev. Lett. 87, 120405 (2001)
Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)
Dyson, F.J.: Ground-state energy of a hard-sphere gas. Phys. Rev. 106, 20–26 (1957)
Girvin, S., Jach, T.: Formalism for the quantum Hall effect: Hilbert space of analytic functions. Phys. Rev. B 29, 5617–5625 (1984)
Gross, E.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–477 (1961)
Hussein, M., Vorov, O.: Generalized yrast states of a Bose-Einstein condensate in a harmonic trap for a universality class of interactions. Phys. Rev. A 65, 035603 (2002)
Laughlin, R.B.: Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)
Lieb, E.H., Seiringer, R.: Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)
Lieb, E.H., Seiringer, R.: Derivation of the Gross-Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264, 505–537 (2006)
Lieb, E.H., Seiringer, R., Solovej, J.P.: Ground-state energy of the low-density Fermi gas. Phys. Rev. A 71, 053605 (2005)
Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation, Oberwolfach Seminars. Birkhäuser, Basel (2005)
Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)
Lieb, E.H., Seiringer, R., Yngvason, J.: One-dimensional behavior of dilute, trapped Bose gases. Commun. Math. Phys. 244, 347–393 (2004)
Lieb, E.H., Seiringer, R., Yngvason, J.: Yrast line of a rapidly rotating Bose gas: Gross-Pitaevskii regime. Phys. Rev. A 79, 063626 (2009)
Lieb, E.H., Yngvason, J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)
Mashkevich, S., Matveenko, S., Ouvry, S.: Exact results for the spectra of bosons and fermions with contact interaction. Nucl. Phys. B 763, 431–444 (2007)
Morris, A.G., Feder, D.L.: Validity of the Lowest Landau Level approximation for rotating Bose gases. Phys. Rev. A 74, 033605 (2006)
Mottelson, B.: Yrast spectra of weakly interacting Bose-Einstein condensates. Phys. Rev. Lett. 83, 2695–2698 (1999)
Papenbrock, T., Bertsch, G.F.: Rotational spectra of weakly interacting Bose-Einstein condensates. Phys. Rev. A 63, 023616 (2001)
Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Zh. Eksp. Teor. Fiz. 40, 646–651 (1961)
Regnault, N., Chang, C.C., Jolicoeur, T., Jain, J.K.: Composite fermion theory of rapidly rotating two-dimensional bosons. J. Phys. B 39, S89–S99 (2006)
Regnault, N., Jolicoeur, T.: Quantum hall fractions for spinless bosons. Phys. Rev. B 69, 235309 (2004)
Regnault, N., Jolicoeur, T.: Parafermionic states in rotating Bose-Einstein condensates. Phys. Rev. B 76, 235324 (2007)
Seiringer, R.: Ground state asymptotics of a dilute, rotating gas. J. Phys. A 36, 9755–9778 (2003)
Seiringer, R., Yin, J.: Ground state energy of the low density Hubbard model. J. Stat. Phys. 131, 1139–1154 (2008)
Seiringer, R., Yin, J.: The Lieb-Liniger model as a limit of dilute bosons in three dimensions. Commun. Math. Phys. 284, 459–479 (2008)
Viefers, S., Hansson, T.H., Reimann, S.M.: Bose condensates at high angular momenta. Phys. Rev. A 62, 053604 (2000)