Strong convergence of a self-adaptive method for the split feasibility problem
Tóm tắt
Từ khóa
Tài liệu tham khảo
Censor Y, Elfving T: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 1994, 8: 221–239. 10.1007/BF02142692
Censor Y, Bortfeld T, Martin B, Trofimov A: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 2006, 51: 2353–2365. 10.1088/0031-9155/51/10/001
Stark H (Ed): Image Recovery: Theory and Applications. Academic Press, San Diego; 1987.
Ceng LC, Ansari QH, Yao JC: An extragradient method for solving split feasibility and fixed point problems. Comput. Math. Appl. 2012, 64: 633–642. 10.1016/j.camwa.2011.12.074
Ceng LC, Ansari QH, Yao JC: Mann type iterative methods for finding a common solution of split feasibility and fixed point problems. Positivity 2012, 16: 471–495. 10.1007/s11117-012-0174-8
Ceng LC, Ansari QH, Yao JC: Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem. Nonlinear Anal. 2012, 75: 2116–2125. 10.1016/j.na.2011.10.012
Bauschke HH, Borwein JM: On projection algorithms for solving convex feasibility problems. SIAM Rev. 1996, 38: 367–426. 10.1137/S0036144593251710
Kiwiel, KC: Block-iterative surrogate projection methods for convex feasibility problems. Technical report, Systems Research Inst., Polish Academy of Sciences, Newelska 6, 01–447, Warsaw, Poland (December 1992)
Butnariu D, Censor Y: On the behavior of a block-iterative projection method for solving convex feasibility problems. Int. J. Comput. Math. 1990, 34: 79–94. 10.1080/00207169008803865
Censor Y: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 1981, 23: 444–464. 10.1137/1023097
Gubin LG, Polyak BT, Raik EV: The method of projection for finding the common point of convex sets. U.S.S.R. Comput. Math. Math. Phys. 1967, 7: 1–24.
Iusem AN, De Pierro AR: On the convergence of Han’s method for convex programming with quadratic objective. Math. Program. 1991, 52: 265–284. 10.1007/BF01582891
Bregman LM: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. U.S.S.R. Comput. Math. Math. Phys. 1967, 7: 200–217.
Byrne C: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 2002, 18: 441–453. 10.1088/0266-5611/18/2/310
Byrne C: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 2004, 20: 103–120. 10.1088/0266-5611/20/1/006
Byrne C: Bregman-Legendre multidistance projection algorithms for convex feasibility and optimization. In Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications. Edited by: Butnariu D, Censor Y, Reich S. Elsevier, Amsterdam; 2001:87–100.
Censor Y, Segal A: The split common fixed point problem for directed operators. J. Convex Anal. 2009, 16: 587–600.
Dang Y, Gao Y: The strong convergence of a KM-CQ-like algorithm for a split feasibility problem. Inverse Probl. 2011., 27: Article ID 015007
Fukushima M: A relaxed projection method for variational inequalities. Math. Program. 1986, 35: 58–70. 10.1007/BF01589441
Qu B, Xiu N: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 2005, 21: 1655–1665. 10.1088/0266-5611/21/5/009
Wang F, Xu HK: Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem. J. Inequal. Appl. 2010. 10.1155/2010/102085
Wang F, Xu HK: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 2011, 74: 4105–4111. 10.1016/j.na.2011.03.044
Wang Z, Yang Q, Yang Y: The relaxed inexact projection methods for the split feasibility problem. Appl. Math. Comput. 2010. 10.1016/j.amc.2010.11.058
Xu HK: A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 2006, 22: 2021–2034. 10.1088/0266-5611/22/6/007
Xu HK: Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 2011, 150: 360–378. 10.1007/s10957-011-9837-z
Yang Q, Zhao J: Several solution methods for the split feasibility problem. Inverse Probl. 2005, 21: 1791–1799. 10.1088/0266-5611/21/5/017
Zhao J, Yang Q: Self-adaptive projection methods for the multiple-sets split feasibility problem. Inverse Probl. 2011., 27: Article ID 035009
Yao Y, Wu J, Liou YC: Regularized methods for the split feasibility problem. Abstr. Appl. Anal. 2012., 2012: Article ID 140679
Ceng LC, Ansari QH, Yao JC: Extragradient-projection method for solving constrained convex minimization problems. Numer. Algebra Control Optim. 2011, 1: 341–359.
Ceng LC, Ansari QH, Yao JC: Some iterative methods for finding fixed points and for solving constrained convex minimization problems. Nonlinear Anal. 2011, 74: 5286–5302. 10.1016/j.na.2011.05.005
Ceng LC, Ansari QH, Wen CF: Multi-step implicit iterative methods with regularization for minimization problems and fixed point problems. J. Inequal. Appl. 2013., 2013: Article ID 240 10.1186/1029-242X-2013-240
Ceng LC, Ansari QH, Wen CF: Implicit relaxed and hybrid methods with regularization for minimization problems and asymptotically strict pseudocontractive mappings in the intermediate sense. Abstr. Appl. Anal. 2013., 2013: Article ID 854297
Goldstein AA: Convex programming in Hilbert space. Bull. Am. Math. Soc. 1964, 70: 709–710. 10.1090/S0002-9904-1964-11178-2
Levitin ES, Polyak BT: Constrained minimization problems. U.S.S.R. Comput. Math. Math. Phys. 1966, 6: 1–50.
Han D: Solving linear variational inequality problems by a self-adaptive projection method. Appl. Math. Comput. 2006, 182: 1765–1771. 10.1016/j.amc.2006.06.013
Han D: Inexact operator splitting methods with self-adaptive strategy for variational inequality problems. J. Optim. Theory Appl. 2007, 132: 227–243. 10.1007/s10957-006-9060-5
Han D, Sun W: A new modified Goldstein-Levitin-Polyak projection method for variational inequality problems. Comput. Math. Appl. 2004, 47: 1817–1825. 10.1016/j.camwa.2003.12.002
He BS, He X, Liu H, Wu T: Self-adaptive projection method for co-coercive variational inequalities. Eur. J. Oper. Res. 2009, 196: 43–48. 10.1016/j.ejor.2008.03.004
He BS, Yang H, Meng Q, Han D: Modified Goldstein-Levitin-Polyak projection method for asymmetric strong monotone variational inequalities. J. Optim. Theory Appl. 2002, 112: 129–143. 10.1023/A:1013048729944
He BS, Yang H, Wang SL: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 2000, 106: 337–356. 10.1023/A:1004603514434
Liao LZ, Wang SL: A self-adaptive projection and contraction method for monotone symmetric linear variational inequalities. Comput. Math. Appl. 2002, 43: 41–48. 10.1016/S0898-1221(01)00269-3
Yang Q: On variable-step relaxed projection algorithm for variational inequalities. J. Math. Anal. Appl. 2005, 302: 166–179. 10.1016/j.jmaa.2004.07.048
Zhang W, Han D, Li Z: A self-adaptive projection method for solving the multiple-sets split feasibility problem. Inverse Probl. 2009., 25: Article ID 115001
Censor Y, Elfving T, Kopf N, Bortfeld T: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 2005, 21: 2071–2084. 10.1088/0266-5611/21/6/017
Xu HK: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 2010., 26: Article ID 105018
Xu HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66: 240–256. 10.1112/S0024610702003332