Strong convergence and stability of Kirk-multistep-type iterative schemes for contractive-type operators

Hudson Akewe1, Godwin Amechi Okeke1, Adekunle F. Olayiwola2
1Department of Mathematics, University of Lagos, Akoka, Yaba, Lagos, Nigeria
2General Studies Department, Federal School of Surveying, Oyo, Oyo, Nigeria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Glowinski R, Le-Tallec P: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia; 1989.

Haubruge S, Nguyen VH, Strodiot JJ: Convergence analysis and applications of the Glowinski-Le-Tallec splitting method for finding a zero of the sum of two maximal monotone operators. J. Optim. Theory Appl. 1998, 97: 645–673. 10.1023/A:1022646327085

Chugh R, Kumar V: Strong convergence of SP iterative scheme for quasi-contractive operators. Int. J. Comput. Appl. 2011, 31(5):21–27.

Chugh R: Stability of hybrid fixed point iterative algorithms of Kirk-Noor type in normed linear space for self and nonself operators. Int. J. Contemp. Math. Sci. 2012, 7(24):1165–1184.

Hussain N, Chugh R, Kumar V, Rafiq A: On the rate of convergence of Kirk-type iterative schemes. J. Appl. Math. 2012., 2012: Article ID 526503

Hussain N, Rafiq A, Damjanović B, Lazović R: On rate of convergence of various iterative schemes. Fixed Point Theory Appl. 2011., 2011: Article ID 45

Imoru CO, Olatinwo MO: On the stability of Picard and Mann iteration. Carpath. J. Math. 2003, 19: 155–160.

Ishikawa S: Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44: 147–150. 10.1090/S0002-9939-1974-0336469-5

Kirk WA: On successive approximations for nonexpansive mappings in Banach spaces. Glasg. Math. J. 1971, 12: 6–9. 10.1017/S0017089500001063

Mann WR: Mean value methods in iterations. Proc. Am. Math. Soc. 1953, 44: 506–510.

Noor MA: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251: 217–229. 10.1006/jmaa.2000.7042

Phuengrattana W, Suantai S: On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math. 2011, 235(9):3006–3014. 10.1016/j.cam.2010.12.022

Qing Y, Rhoades BE: Comments on the rate of convergence between Mann and Ishikawa iterations applied to Zamfirescu operators. Fixed Point Theory Appl. 2008., 2008: Article ID 387504

Rafiq A: On the convergence of the three-step iteration process in the class of quasi-contractive operators. Acta Math. Acad. Paedagog. Nyházi. 2006, 22: 305–309.

Rhoades BE, Soltuz SM: The equivalence between Mann-Ishikawa iterations and multi-step iteration. Nonlinear Anal. 2004, 58: 219–228. 10.1016/j.na.2003.11.013

Olatinwo MO: Some stability results for two hybrid fixed point iterative algorithms in normed linear space. Mat. Vesn. 2009, 61(4):247–256.

Berinde V: Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators. Fixed Point Theory Appl. 2004, 2: 97–105.

Chatterjea SK: Fixed point theorems. C. R. Acad. Bulgare Sci. 1972, 25(6):727–730.

Kannan R: Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 10: 71–76.

Osilike MO: Stability results for Ishikawa fixed point iteration procedure. Indian J. Pure Appl. Math. 1995/1996, 26(10):937–941.

Zamfirescu T: Fixed point theorems in metric spaces. Arch. Math. 1972, 23: 292–298. 10.1007/BF01304884

Berinde V: On the stability of some fixed point procedures. Bul. Ştiinţ. - Univ. Baia Mare, Ser. B Fasc. Mat.-Inform. 2002, XVIII(1):7–14.

Berinde V: On the convergence of the Ishikawa iteration in the class of quasi-contractive operators. Acta Math. Univ. Comen. 2004, LXXIII(1):119–126.

Ostrowski AM: The round-off stability of iterations. Z. Angew. Math. Mech. 1967, 47: 77–81. 10.1002/zamm.19670470202

Harder AM, Hicks TL: Stability results for fixed point iteration procedures. Math. Jpn. 1988, 33(5):693–706.

Akewe, H: Approximation of fixed and common fixed points of generalized contractive-like operators. Ph.D. thesis, University of Lagos, Lagos, Nigeria (2010)

Berinde V: Iterative Approximation of Fixed Points. Editura Efemeride, Baia Mare; 2002.

Rhoades BE: Fixed point iteration using infinite matrices. Trans. Am. Math. Soc. 1974, 196: 161–176.

Rhoades BE: Comment on two fixed point iteration method. J. Math. Anal. Appl. 1976, 56: 741–750. 10.1016/0022-247X(76)90038-X

Rhoades BE: A comparison of various definition of contractive mapping. Trans. Am. Math. Soc. 1977, 226: 257–290.

Akewe H, Olaoluwa H: On the convergence of modified three-step iteration process for generalized contractive-like operators. Bull. Math. Anal. Appl. 2012, 4(3):78–86.

Rafiq A: A convergence theorem for Mann fixed point iteration procedure. Appl. Math. E-Notes 2006, 6: 289–293.

Olaleru JO, Akewe H: An extension of Gregus fixed point theorem. Fixed Point Theory Appl. 2007., 2007: Article ID 78628

Osilike MO, Udomene A: Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings. Indian J. Pure Appl. Math. 1999, 30: 1229–1234.

Rhoades BE: Fixed point theorems and stability results for fixed point iteration procedures. Indian J. Pure Appl. Math. 1990, 21: 1–9.

Rhoades BE: Fixed point theorems and stability results for fixed point iteration procedures II. Indian J. Pure Appl. Math. 1993, 24(11):691–703.