Strong Limit Theorems for Weighted Sums of Negatively Associated Random Variables
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alam, K., Saxena, K.M.L.: Positive dependence in multivariate distributions. Commun. Stat. Theory Methods A10, 1183–1196 (1981)
Baek, J.I., Kim, T.S., Liang, H.Y.: On the convergence of moving average processes under dependent conditions. Aust. N. Z. J. Stat. 45, 331–342 (2003)
Bai, Z.D., Cheng, P.E.: Marcinkiewicz strong laws for linear statistics. Stat. Probab. Lett. 46, 105–112 (2000)
Bai, Z.D., Cheng, P.E., Zhang, C.H.: An extension of the Hardy-Littlewood strong law. Stat. Sinica 7, 923–928 (1997)
Baum, L.E., Katz, M.: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120, 108–123 (1965)
Bingham, N.H., Nili Sant, H.R.: Summability methods and negatively associated random variables. J. Appl. Probab. 41A, 231–238 (2004)
Bingham, N.H., Tenenbaum, M.: Riesz and Valiron means and fractional moments. Math. Proc. Camb. Philos. Soc. 99, 143–149 (1986)
Chandra, T.K., Ghosal, S.: Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables. Acta Math. Hung. 71, 327–336 (1996)
Chow, Y.S.: Some convergence theorems for independent random variables. Ann. Math. Stat. 37, 1482–1492 (1966)
Chow, Y.S.: Delayed sums and Borel summability of independent identically distributed random variables. Bull. Inst. Math. Acad. Sinica 1, 207–220 (1973)
Chow, Y.S., Lai, T.L.: Limiting behavior of weighted sums independent random variables. Ann. Probab. 1, 810–824 (1973)
Cuzick, J.: A strong law for weighted sums of i.i.d. random variables. J. Theor. Probab. 8, 625–641 (1995)
Déniel, Y., Derriennic, Y.: Sur la convergence presque sure, au sens de Cesàro d’ordre α, 0<α<1, de variables aléatoires et indépendantes et identiquement distribuées. Probab. Theory Relat. Fields 79, 629–636 (1988)
Gut, A.: Complete convergence and Cesàro summation for i.i.d. random variables. Probab. Theory Relat. Fields 97, 169–178 (1993)
Heinkel, B.: An infinite-dimensional law of large numbers in Cesàro’s sense. J. Theor. Probab. 3, 533–546 (1990)
Hsu, P.L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 33, 25–31 (1947)
Joag-Dev, K., Proschan, F.: Negative association of random variables with applications. Ann. Stat. 11, 286–295 (1983)
Lai, T.L.: Summability methods for independent identically distributed random variables. Proc. Am. Math. Soc. 45, 253–261 (1974)
Lanzinger, H., Stadtmüler, U.: Weighted sums for i.i.d. random variables with relatively thin tails. Bernoulli 6, 45–61 (2000)
Lanzinger, H., Stadtmüller, U.: Baum-Katz laws for certain weighted sums of independent and identically distributed random variables. Bernoulli 9, 985–1002 (2003)
Li, D.L., Rao, M.B., Jiang, T.F., et al.: Complete convergence and almost sure convergence of weighted sums of random variables. J. Theor. Probab. 8, 49–76 (1995)
Liang, H.Y., Baek, J.I.: Weighted sums of negatively associated random variables. Aust. N. Z. J. Stat. 48(1), 21–31 (2006)
Liang, H.Y., Su, C.: Complete convergence for weighted sums of NA sequences. Stat. Probab. Lett. 45, 85–95 (1999)
Lorentz, G.G.: Borel and Banach properties of methods of summation. Duke Math. J. 22, 129–141 (1955)
Matula, P.: A note on the almost sure convergence of sums of negatively dependent random variables. Stat. Probab. Lett. 15, 209–213 (1992)
Petrov, V.V.: Limit Theorems of Probability Theory. Oxford University Press, New York (1995)
Pruss, A.R.: A two-sided estimate in the Hsu-Robbins-Erdös law of large numbers. Stoch. Process. Appl. 70, 173–180 (1997)
Pruss, A.R.: A general Hsu-Robbins-Erdös type estimate of tail probabilities of sums of independent identically distributed random variables. Period. Math. Hung. 46, 181–201 (2003)
Roussas, G.G.: Asymptotic normality of random fields of positively or negatively associated processes. J. Multivariate Anal. 50, 152–173 (1994)
Shao, Q.M.: A comparison theorem on maximum inequalities between negatively associated and independent random variables. J. Theor. Probab. 13, 343–356 (2000)
Shao, Q.M., Su, C.: The law of the iterated logarithm for negatively associated random variables. Stoch. Process. Appl. 83, 139–148 (1999)
Spitzer, F.: A combinatorial lemma and its applications to probability theory. Trans. Am. Math. Soc. 82, 323–339 (1956)
Su, C., Wang, Y.B.: Strong convergence for IDNA sequences. Chin. J. Appl. Probab. Stat. 14(2), 131–140 (1998) (in Chinese)
Su, C., Zhao, L.C., Wang, Y.B.: Moment inequalities and week convergence for negatively associated sequences. Sci. China Ser. A 40, 172–182 (1997)