Strong Limit Theorems for Weighted Sums of Negatively Associated Random Variables

Springer Science and Business Media LLC - Tập 21 Số 4 - Trang 890-909 - 2008
Bing-Yi Jing1, Han-Ying Liang2
1Department of Mathematics, Hong Kong Univ. of Science and Technology, Kowloon, Hong Kong
2Department of Mathematics, Tongji University, Shanghai, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alam, K., Saxena, K.M.L.: Positive dependence in multivariate distributions. Commun. Stat. Theory Methods A10, 1183–1196 (1981)

Baek, J.I., Kim, T.S., Liang, H.Y.: On the convergence of moving average processes under dependent conditions. Aust. N. Z. J. Stat. 45, 331–342 (2003)

Bai, Z.D., Cheng, P.E.: Marcinkiewicz strong laws for linear statistics. Stat. Probab. Lett. 46, 105–112 (2000)

Bai, Z.D., Cheng, P.E., Zhang, C.H.: An extension of the Hardy-Littlewood strong law. Stat. Sinica 7, 923–928 (1997)

Baum, L.E., Katz, M.: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120, 108–123 (1965)

Bingham, N.H., Nili Sant, H.R.: Summability methods and negatively associated random variables. J. Appl. Probab. 41A, 231–238 (2004)

Bingham, N.H., Tenenbaum, M.: Riesz and Valiron means and fractional moments. Math. Proc. Camb. Philos. Soc. 99, 143–149 (1986)

Chandra, T.K., Ghosal, S.: Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables. Acta Math. Hung. 71, 327–336 (1996)

Chow, Y.S.: Some convergence theorems for independent random variables. Ann. Math. Stat. 37, 1482–1492 (1966)

Chow, Y.S.: Delayed sums and Borel summability of independent identically distributed random variables. Bull. Inst. Math. Acad. Sinica 1, 207–220 (1973)

Chow, Y.S., Lai, T.L.: Limiting behavior of weighted sums independent random variables. Ann. Probab. 1, 810–824 (1973)

Cuzick, J.: A strong law for weighted sums of i.i.d. random variables. J. Theor. Probab. 8, 625–641 (1995)

Déniel, Y., Derriennic, Y.: Sur la convergence presque sure, au sens de Cesàro d’ordre α, 0<α<1, de variables aléatoires et indépendantes et identiquement distribuées. Probab. Theory Relat. Fields 79, 629–636 (1988)

Erdös, P.: On a theorem of Hsu and Robbins. Ann. Math. Stat. 20, 286–291 (1949)

Erdös, P.: Remark on my paper “On a theorem of Hsu and Robbins”. Ann. Math. Stat. 21, 138 (1950)

Gut, A.: Complete convergence and Cesàro summation for i.i.d. random variables. Probab. Theory Relat. Fields 97, 169–178 (1993)

Heinkel, B.: An infinite-dimensional law of large numbers in Cesàro’s sense. J. Theor. Probab. 3, 533–546 (1990)

Hsu, P.L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 33, 25–31 (1947)

Jajte, R.: On the strong law of large numbers. Ann. Probab. 31(1), 409–412 (2003)

Joag-Dev, K., Proschan, F.: Negative association of random variables with applications. Ann. Stat. 11, 286–295 (1983)

Lai, T.L.: Summability methods for independent identically distributed random variables. Proc. Am. Math. Soc. 45, 253–261 (1974)

Lanzinger, H., Stadtmüler, U.: Weighted sums for i.i.d. random variables with relatively thin tails. Bernoulli 6, 45–61 (2000)

Lanzinger, H., Stadtmüller, U.: Baum-Katz laws for certain weighted sums of independent and identically distributed random variables. Bernoulli 9, 985–1002 (2003)

Lehmann, E.L.: Some concepts of dependence. Ann. Math. Stat. 37, 1137–1153 (1966)

Li, D.L., Rao, M.B., Jiang, T.F., et al.: Complete convergence and almost sure convergence of weighted sums of random variables. J. Theor. Probab. 8, 49–76 (1995)

Liang, H.Y., Baek, J.I.: Weighted sums of negatively associated random variables. Aust. N. Z. J. Stat. 48(1), 21–31 (2006)

Liang, H.Y., Su, C.: Complete convergence for weighted sums of NA sequences. Stat. Probab. Lett. 45, 85–95 (1999)

Lorentz, G.G.: Borel and Banach properties of methods of summation. Duke Math. J. 22, 129–141 (1955)

Matula, P.: A note on the almost sure convergence of sums of negatively dependent random variables. Stat. Probab. Lett. 15, 209–213 (1992)

Petrov, V.V.: Limit Theorems of Probability Theory. Oxford University Press, New York (1995)

Pruss, A.R.: A two-sided estimate in the Hsu-Robbins-Erdös law of large numbers. Stoch. Process. Appl. 70, 173–180 (1997)

Pruss, A.R.: A general Hsu-Robbins-Erdös type estimate of tail probabilities of sums of independent identically distributed random variables. Period. Math. Hung. 46, 181–201 (2003)

Roussas, G.G.: Asymptotic normality of random fields of positively or negatively associated processes. J. Multivariate Anal. 50, 152–173 (1994)

Shao, Q.M.: A comparison theorem on maximum inequalities between negatively associated and independent random variables. J. Theor. Probab. 13, 343–356 (2000)

Shao, Q.M., Su, C.: The law of the iterated logarithm for negatively associated random variables. Stoch. Process. Appl. 83, 139–148 (1999)

Spitzer, F.: A combinatorial lemma and its applications to probability theory. Trans. Am. Math. Soc. 82, 323–339 (1956)

Su, C., Wang, Y.B.: Strong convergence for IDNA sequences. Chin. J. Appl. Probab. Stat. 14(2), 131–140 (1998) (in Chinese)

Su, C., Zhao, L.C., Wang, Y.B.: Moment inequalities and week convergence for negatively associated sequences. Sci. China Ser. A 40, 172–182 (1997)

Thrum, R.: A remark on almost sure convergence of weighted sums. Probab. Theory Relat. Fields 75, 425–430 (1987)