Stripe distribution on graphene-coated Cu surface and its effect on oxidation and corrosion resistance of graphene

Journal of Applied Physics - Tập 121 Số 24 - 2017
Yanhui Zhang1,2, Haoran Zhang1,2,3, Zhiying Chen1,2, Xiaoming Ge1,2,3, Yijian Liang1,2,3, Shike Hu1,2,3, Rongxuan Deng1,2,3, Yanping Sui1,2, Guang-hui Yu1,2
1CAS Center for Excellence in Superconducting Electronics 2 , 865 Changning Road, Shanghai 200050, China
2State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences 1 , 865 Changning Road, Shanghai 200050, China
3University of Chinese Academy of Sciences 3 , No.19A Yuquan Road, Beijing 100049, China

Tóm tắt

The morphology and distribution of the stripes caused by Cu surface reconstruction were measured, and the effects of stripes on graphene stability were studied by oxidation and corrosion. The results reveal that the stripes are determined by the crystal orientation of both the Cu surface and graphene, which can both change the stripe distribution, and the stripes can also be influenced by the graphene thickness. The stripes would not induce cracks or destruction to the graphene. The oxidation resistance of graphene can be improved by Cu surface reconstruction. The local nonuniform distortion of the stripe area may induce a bigger strain in the graphene which, in turn, may induce structure instability and result in local stability degeneration in the stripe area.

Từ khóa


Tài liệu tham khảo

2007, Nat. Mater., 6, 183, 10.1038/nmat1849

2009, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109

2011, ACS Nano, 5, 1321, 10.1021/nn103028d

2015, Faraday Discuss., 180, 495, 10.1039/C4FD00259H

2008, Nano Lett., 8, 323, 10.1021/nl072838r

2010, Nat. Photonics, 4, 611, 10.1038/nphoton.2010.186

2010, Science, 327, 662, 10.1126/science.1184289

2010, Nano Lett., 10, 490, 10.1021/nl903272n

2009, Nano Lett., 9, 4479, 10.1021/nl902790r

2010, Nat. Nanotechnol., 5, 574, 10.1038/nnano.2010.132

2009, Nature, 457, 706, 10.1038/nature07719

2010, Nano Lett., 10, 4702, 10.1021/nl1029978

2011, Nat. Mater., 10, 443, 10.1038/nmat3010

2011, Nature, 469, 389, 10.1038/nature09718

2010, Nano Lett., 10, 4328, 10.1021/nl101629g

2014, Nanoscale, 6, 7288, 10.1039/c3nr06828e

2011, J. Am. Chem. Soc., 133, 2816, 10.1021/ja109793s

2012, ACS Nano, 6, 9110, 10.1021/nn303352k

2012, J. Am. Chem. Soc., 134, 3627, 10.1021/ja2105976

2012, Nat. Commun., 3, 699, 10.1038/ncomms1702

2013, Mater. Lett., 96, 149, 10.1016/j.matlet.2013.01.024

2013, Science, 342, 720, 10.1126/science.1243879

2013, ACS Nano, 7, 9480, 10.1021/nn404393b

2013, Nat. Commun., 4, 2096, 10.1038/ncomms3096

2016, Sci. Rep., 6, 21152, 10.1038/srep21152

2012, Nano Lett., 12, 3431, 10.1021/nl300563h

2013, Appl. Phys. Lett., 102, 111601, 10.1063/1.4795861

2014, Carbon, 70, 81, 10.1016/j.carbon.2013.12.075

2014, Appl. Phys. Lett., 104, 143110, 10.1063/1.4871000

2014, Carbon, 70, 75, 10.1016/j.carbon.2013.12.074

2012, Nano Lett., 12, 3893, 10.1021/nl3002974

2015, RSC Adv., 5, 96587, 10.1039/C5RA17581J

2013, Appl. Phys. Lett., 103, 043119, 10.1063/1.4816752