Stretchable silicon nanoribbon electronics for skin prosthesis

Nature Communications - Tập 5 Số 1
Jaemin Kim1, Min‐Cheol Lee2, Hyung Joon Shim1, Roozbeh Ghaffari3, Hye Rim Cho4, Donghee Son1, Yei Hwan Jung5, Min Soh1, Changsoon Choi1, Sungmook Jung1, Kon Chu6, Daejong Jeon6, Soon‐Tae Lee6, Ji Hoon Kim7, Seung Hong Choi4, Taeghwan Hyeon1, Dae‐Hyeong Kim8
11] Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Korea [2] School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, Korea.
21] Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Korea [2] Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 151-742, Korea.
3MC10 Inc., 9 Camp Street, Cambridge, Massachusetts 02140, USA.
41] Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Korea [2] Department of Radiology, Seoul National University College of Medicine, Seoul 110-744, Korea.
5Department of Electrical and Computer Engineering, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
6Department of Neurology, Seoul National University Hospital, Seoul 110-744, Korea.
7School of Mechanical Engineering, Pusan National University, Busan 609-735, Korea
81] Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Korea [2] School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, Korea [3] Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 151-742, Korea.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dahiya, R. S. & Valle, M. Robotic Tactile Sensing Ch. 3, Springer Science+Business Media (2013).

Ma, Q. Labeled lines meet and talk: population coding of somatic sensations. J. Clin. Invest. 120, 3773–3778 (2010).

Dahiya, R. S. & Valle, M. Robotic Tactile Sensing Ch. 1, Springer Science+Business Media (2013).

Jacobsen, S. C., Knutti, D. F., Johnson, R. T. & Sears, H. H. Development of the Utah artificial arm. IEEE Trans. Biomed. Eng. 29, 249–269 (1982).

Raspopovic, S. et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222ra19 (2014).

Graz, I. et al. Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin. J. Appl. Phys. 106, 034503 (2009).

Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010).

Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011).

Pang, C. et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012).

Persano, L. et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013).

Vandeparre, H., Watson, D. & Lacour, S. P. Extremely robust and conformable capacitive pressure sensors based on flexible polyurethane foams and stretchable metallization. Appl. Phys. Lett. 103, 204103 (2013).

Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

Lu, N., Lu, C., Yang, S. & Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012).

Jung, S. et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv. Mater. 26, 4825–4830 (2014).

Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).

Sekitani, T. et al. Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516–1519 (2009).

Sekitani, T., Zschieschang, U., Klauk, H. & Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nat. Mater. 9, 1015–1022 (2010).

Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9, 821–826 (2010).

Wang, C. et al. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12, 899–904 (2013).

Yang, S. & Lu, N. Gauge factor and stretchability of silicon-on-polymer strain gauges. Sensors 13, 8577–8594 (2013).

Son, D. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014).

Ying, M. et al. Silicon nanomembranes for fingertip electronics. Nanotechnology 23, 344004 (2012).

Webb, R. C. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938–944 (2013).

Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).

Li, X. et al. Measurement for fracture toughness of single crystal silicon film with tensile test. Sens. Actuator A-Phys. 119, 229–235 (2005).

Suo, Z. Mechanics of stretchable electronics and soft machines. MRS Bull. 37, 218–225 (2012).

Kim, D.-H. et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl Acad. Sci. USA 109, 19910–19915 (2012).

Han, I. Y. & Kim, S. J. Diode temperature sensor array for measuring micro-scale surface temperatures with high resolution. Sens. Actuator A-Phys. 141, 52–58 (2008).

Tien, N. T. et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv. Mater. 26, 796–804 (2014).

Ackerley, R., Olausson, H., Wessberg, J. & McGlone, F. Wetness perception across body sites. Neurosci. Lett. 522, 73–77 (2012).

Spira, M. E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013).

Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).

Grill, W. M., Norman, S. E. & Bellamkonda, R. V. Implanted neural interfaces: biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 11, 1–24 (2009).

Zhong, Y. & Bellamkonda, R. V. Biomaterials for the central nervous system. J. R. Soc. Interface 5, 957–975 (2008).

Kim, C. K. et al. Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem. Int. Ed. 51, 11039–11043 (2012).

Lacour, S. P. et al. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med. Biol. Eng. Comput. 48, 945–954 (2010).

Jeon, D. et al. Observational fear learning involves affective pain system and Cav 1.2 Ca2+ channels in ACC. Nat. Neurosci. 13, 482–488 (2010).

Khalid, A., Kim, B. S., Chung, M. K., Ye, J. C. & Jeon, D. Tracing the evolution of multi-scale functional networks in a mouse model of depression using persistent brain network homology. Neuroimage 101, 351–363 (2014).

Stacey, W. C. & Litt, B. Technology insight: neuroengineering and epilepsy—designing devices for seizure control. Nat. Clin. Pract. Neurol. 4, 190–201 (2008).