Strategy for successful expression of the Pseudomonas putida nitrile hydratase activator P14K in Escherichia coli
Tóm tắt
Activators of Nitrile hydratase (NHase) are essential for functional NHase biosynthesis. However, the activator P14K in P. putida is difficult to heterogeneously express, which retards the clarification of the mechanism of P14K involved in the maturation of NHase. Although a strep tag containing P14K (strep-P14K) was over-expressed, its low expression level and low stability affect the further analysis. We successfully expressed P14K through genetic modifications according to N-end rule and analyzed the mechanism for its difficult expression. We found that mutation of the second N-terminal amino-acid of the protein from lysine to alanine or truncating the N-terminal 16 amino-acid sequence resulted in successful expression of P14K. Moreover, fusion of a pelB leader and strep tag together (pelB-strep-P14K) at the N-terminus increased P14K expression. In addition, the pelB-strep-P14K was more stable than the strep-P14K. Our results are not only useful for clarification of the role of P14K involved in the NHase maturation, but also helpful for heterologous expression of other difficult expression proteins.
Tài liệu tham khảo
Noguchi T, Nojiri M, Takei K, Odaka M, Kamiya N: Protonation structures of Cys-sulfinic and Cys-sulfenic acids in the photosensitive nitrile hydratase revealed by Fourier transform infrared spectroscopy. Biochemistry. 2003, 42: 11642-11650. 10.1021/bi035260i.
Kobayashi M, Shimizu S: Cobalt proteins. Eur J Biochem. 1999, 261: 1-9. 10.1046/j.1432-1327.1999.00186.x.
Kobayashi M, Fujiwara Y, Goda M, Komeda H, Shimizu S: Identification of active sites in amidase: evolutionary relationship between amide bond- and peptide bond-cleaving enzymes. Proc Natl Acad Sci U S A. 1997, 94: 11986-11991. 10.1073/pnas.94.22.11986.
Nagashima S, Nakasako M, Dohmae N, Tsujimura M, Takio K, Odaka M, Yohda M, Kamiya N, Endo I: Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms. Nat Struct Mol Biol. 1998, 5: 347-351. 10.1038/nsb0598-347.
Murakami T, Nojiri M, Nakayama H, Dohmae N, Takio K, Odaka M, Endo I, Nagamune T, Yohda M: Post‒translational modification is essential for catalytic activity of nitrile hydratase. Protein Sci. 2000, 9: 1024-1030. 10.1110/ps.9.5.1024.
Miyanaga A, Fushinobu S, Ito K, Shoun H, Wakagi T: Mutational and structural analysis of cobalt‒containing nitrile hydratase on substrate and metal binding. Eur J Biochem. 2003, 271: 429-438.
Arakawa T, Kawano Y, Kataoka S, Katayama Y, Kamiya N, Yohda M, Odaka M: Structure of thiocyanate hydrolase: a new nitrile hydratase family protein with a novel five-coordinate cobalt (III) center. J Mol Biol. 2007, 366: 1497-1509. 10.1016/j.jmb.2006.12.011.
Okamoto S, Eltis LD: The biological occurrence and trafficking of cobalt. Metallomics. 2011, 3: 963-970. 10.1039/c1mt00056j.
Nojiri M, Yohda M, Odaka M, Matsushita Y, Tsujimura M, Yoshida T, Dohmae N, Takio K, Endo I: Functional expression of nitrile hydratase in Escherichia coli: requirement of a nitrile hydratase activator and post-translational modification of a ligand cysteine. J Biochem. 1999, 125: 696-704. 10.1093/oxfordjournals.jbchem.a022339.
Nishiyama M, Horinouchi S, Kobayashi M, Nagasawa T, Yamada H, Beppu T: Cloning and characterization of genes responsible for metabolism of nitrile compounds from Pseudomonas chlororaphis B23. J Bacteriol. 1991, 173: 2465-2472.
Hashimoto Y, Nishiyama M, Horinouchi S, Beppu T: Nitrile hydratase gene from Rhodococcus sp. N-774 requirement for its downstream region for efficient expression. Biosci Biotechnol Biochem. 1994, 58: 1859-1865. 10.1271/bbb.58.1859.
Lu J, Zheng Y, Yamagishi H, Odaka M, Tsujimura M, Maeda M, Endo I: Motif CXCC in nitrile hydratase activator is critical for NHase biogenesis in vivo. FEBS Lett. 2003, 553: 391-396. 10.1016/S0014-5793(03)01070-6.
Zhou Z, Hashimoto Y, Shiraki K, Kobayashi M: Discovery of posttranslational maturation by self-subunit swapping. Proc Natl Acad Sci U S A. 2008, 105: 14849-14854. 10.1073/pnas.0803428105.
Zhou ZM, Hashimoto Y, Cui TW, Washizawa Y, Mino H, Kobayashi M: Unique Biogenesis of High-Molecular Mass Multimeric Metalloenzyme Nitrile Hydratase: Intermediates and a Proposed Mechanism for Self-Subunit Swapping Maturation. Biochemistry. 2010, 49: 9638-9648. 10.1021/bi100651v.
Zhou ZM, Hashimoto Y, Kobayashi M: Self-subunit Swapping Chaperone Needed for the Maturation of Multimeric Metalloenzyme Nitrile Hydratase by a Subunit Exchange Mechanism Also Carries Out the Oxidation of the Metal Ligand Cysteine Residues and Insertion of Cobalt. J Biol Chem. 2009, 284: 14930-14938. 10.1074/jbc.M808464200.
Okamoto S, Van Petegem F, Patrauchan MA, Eltis LD: AnhE, a metallochaperone involved in the maturation of a cobalt-dependent nitrile hydratase. J Biol Chem. 2010, 285: 25126-25133. 10.1074/jbc.M110.109223.
Wu S, Fallon RD, Payne MS: Over-production of stereoselective nitrile hydratase from Pseudomonas putida 5B in Escherichia coli: activity requires a novel downstream protein. Appl Microbiol Biotechnol. 1997, 48: 704-708. 10.1007/s002530051119.
Liu Y, Cui W, Xia Y, Cui Y, Kobayashi M, Zhou Z: Self-subunit swapping occurs in another gene type of cobalt nitrile hydratase. PLoS One. 2012, 7: e50829-10.1371/journal.pone.0050829.
Varshavsky A: The N‒end rule pathway of protein degradation. Genes Cells. 1997, 2: 13-28. 10.1046/j.1365-2443.1997.1020301.x.
Mogk A, Schmidt R, Bukau B: The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 2007, 17: 165-172. 10.1016/j.tcb.2007.02.001.
Dougan D, Truscott K, Zeth K: The bacterial N‒end rule pathway: expect the unexpected. Mol Microbiol. 2010, 76: 545-558. 10.1111/j.1365-2958.2010.07120.x.
Tobias JW, Shrader TE, Rocap G, Varshavsky A: The N-end rule in bacteria. Science. 1991, 254: 1374-1377. 10.1126/science.1962196.
Dougan D, Micevski D, Truscott K: The N-end rule pathway: From recognition by N-recognins, to destruction by AAA + proteases. Biochim Biophys Acta. 1823, 2012: 83-91.
Salis HM, Mirsky EA, Voigt CA: Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009, 27: 946-950. 10.1038/nbt.1568.
Icev A, Ruiz C, Ryder EF: Distance-enhanced association rules for gene expression. Gene. 2003, 10: 34-40.
Sahdev S, Khattar SK, Saini KS: Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem. 2008, 307: 249-264.
Kwon WS, Da Silva NA, Kellis JT: Relationship between thermal stability, degradation rate and expression yield of barnase variants in the periplasm of Escherichia coli. Protein Eng. 1996, 9: 1197-1202. 10.1093/protein/9.12.1197.
Choi J, Lee S: Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol. 2004, 64: 625-635. 10.1007/s00253-004-1559-9.