Strain and strain rate parametric imaging. A new method for post processing to 3-/4-dimensional images from three standard apical planes. Preliminary data on feasibility, artefact and regional dyssynergy visualisation

Cardiovascular Ultrasound - Tập 1 - Trang 1-12 - 2003
Asbjørn Støylen1, Charlotte B Ingul1, Hans Torp1
1Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway

Tóm tắt

We describe a method for 3-/4D reconstruction of tissue Doppler data from three standard apical planes, post processing to derived data of strain rate / strain and parametric colour imaging of the data. The data can be displayed as M-mode arrays from all six walls, Bull's eye projection and a 3D surface figure that can be scrolled and rotated. Numerical data and waveforms can be re-extracted. Feasibility was tested by Strain Rate Imaging in 6 normal subjects and 6 patients with acute myocardial infarction. Reverberation artefacts and dyssynergy was identified by colour images. End systolic strain, peak systolic and mid systolic strain rate were measured. Infarcts were visualised in all patients by colour imaging of mid systolic strain rate, end systolic strain and post systolic shortening by strain rate. Reverberation artefacts were visible in 3 of 6 normals, and 2 of 6 patients, and were identified both on bull's eye and M-mode display, but influenced quantitative measurement. Peak systolic strain rate was in controls minimum -1.11, maximum -0.89 and in patients minimum -1.66, maximum 0.02 (p = 0.04). Mid systolic strain rate and end systolic strain did not separate the groups significantly. 3-/4D reconstruction and colour display is feasible, allowing quick visual identification of infarcts and artefacts, as well as extension of area of post systolic shortening. Strain rate is better suited to colour parametric display than strain.

Tài liệu tham khảo

Sutherland GR, Stewart MJ, Groundstroem KW, Moran CM, Fleming A, Guell-Peris FJ, Riemersma RA, Fenn LN, Fox KA, McDicken WN: Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr. 1994, 7: 441-58. Pan C, Hoffmann R, Kuhl H, Severin E, Franke A, Hanrath P: Tissue tracking allows rapid and accurate visual evaluation of left ventricular function. Eur J Echocardiogr. 2001, 2: 197-202. 10.1053/euje.2001.0098 Höglund C, Alam M, Thorstrand C: Atrioventricular valve plane displacement in healthy persons. An echocardiographic study. Acta Med Scand. 1988, 224: 557-562. Simonson JS, Schiller NB: Descent of the base of the left ventricle: an echocardiographic index of left ventricular function. J Am Soc Echocardiogr. 1989, 2: 25-35. Alam M, Hoglund C, Thorstrand C: Longitudinal systolic shortening of the left ventricle: an echocardiographic study in subjects with and without preserved global function. Clin Physiol. 1992, 12: 443-52. Heimdal A, Stoylen A, Torp H, Skjaerpe T: Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr. 1998, 11: 1013-19. Greenberg NL, Firstenberg MS, Castro PL, Main M, Travaglini A, Odabashian JA, Drinko JK, Rodriguez LL, Thomas JD, Garcia MJ: Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility. Circulation. 2002, 105: 99-105. 10.1161/hc0102.101396 Stoylen A, Heimdal A, Bjornstad K, Torp H, Skjaerpe T: Strain rate imaging by ultrasound in the diagnosis of regional dysfunction of the left ventricle. Echocardiography. 1999, 16: 321-329. Stoylen A, Heimdal A, Bjornstad K, Wiseth R, Vik-Mo H, Torp H, Angelsen B, Skjaerpe T: Strain rate imaging by ultrasound in the diagnosis of coronary artery disease. J Am Soc Echocardiogr. 2000, 13: 1053-1064. 10.1067/mje.2000.106573 D'hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, Hatle L, Suetens P, Sutherland GR: Regional Strain Rate Measurements by Cardiac Ultrasound: Principles, Implementation and Limitations. Eur J Echocardiography. 2000, 1: 154-170. 10.1053/euje.2000.0031. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA: Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation. 2000, 102: 1158-1164. Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JA, Smiseth OA: Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation. 2002, 106: 50-56. 10.1161/01.CIR.0000019907.77526.75 Brodin LA, van der Linden J, Olstad B: Echocardiographic functional images based on tissue velocity information. Herz. 1998, 23: 1183-1199. Stoylen A, Slordahl S, Skjelvan GK, Heimdal A, Skjaerpe T: Strain Rate Imaging in Normal and Reduced Diastolic Function: Comparison with Pulsed Doppler Tissue Imaging of the Mitral Annulus. J Am Soc Echocardiogr. 2001, 14: 264-274. 10.1067/mje.2001.110375 Støylen A, Skjelvan G, Skjaerpe T: Flow propagation velocity is not a simple index of diastolic function in early filling. A comparative study of early diastolic strain rate and strain rate propagation, flow and flow propagation in normal and reduced diastolic function. Cardiovasc Ultrasound. 2003, 1: 3- 10.1186/1476-7120-1-3 Bjørnstad K, Maehle J, Aakhus S: Quantitative computerized analysis of left ventricular wall motion. In: Computerized echocardiography. Edited by: Domenicucci S, Roelandt J, Pezzano A. Torino: Centro scientifico, 1993, 41-55. Maehle J: Assessment of left ventricular volume and regional dysfunction based on 3D endocardial surfaces reconstructed from 2D ultrasound images of the heart. PhD thesis. Norwegian University of Science and Technology, Department of Technical Cybernetics. 1996. Andreas Heimdal: Doppler based ultrasound imaging methods for non-invasive assessment of viability. PhD thesis. Norwegian University of Science and Technology, Department of Telematics. 1999. Voigt JU, Arnold MF, Karlsson M, Hubbert L, Kukulski T, Hatle L, Sutherland GR: Assessment of Regional Longitudinal Myocardial Strain Rate Derived from Doppler Myocardial Imaging Indexes in Normal and Infarcted Myocardium. J Am Soc Echocardiogr. 2000, 13: 588-598. 10.1067/mje.2000.105631 Kowalski M, Kukulski T, Jamal F, D'hooge J, Weidemann F, Rademakers F, Bijnens B, Hatle L, Sutherland GR: Can natural strain and strain rate quantify regional myocardial deformation? A study in healthy subjects. Ultrasound in Med & Biol. 2001, 27: 1087-1097. 10.1016/S0301-5629(01)00388-X. Hatle L, Sutherland GR: Regional myocardial function – a new approach. The Grüntzig Lecture. Eur Heart J. 2000, 21: 1337-1357. 10.1053/euhj.2000.2251 Kukulski T, Jamal F, D'Hooge J, Bijnens B, De Scheerder I, Sutherland GR: Acute Changes in Systolic and Diastolic Events During Clinical Coronary Angioplasty: A Comparison of Regional Velocity, Strain Rate, and Strain Measurement. J Am Soc Echocardiogr. 2002, 15: 1-12. 10.1067/mje.2002.114844 Wilkenshoff UM, Sovany A, Wigstrom L, Olstad B, Lindstrom L, Engvall J, Janerot-Sjoberg B, Wranne B, Hatle L, Sutherland GR: Regional mean systolic myocardial velocity estimation by real-time color Doppler myocardial imaging: a new technique for quantifying regional systolic function. J Am Soc Echocardiogr. 1998, 11: 683-692. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I, Silverman NH, Tajik J: Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr. 1989, 2: 358-367.