Stochastic Ising models and anisotropic front propagation

Journal of Statistical Physics - Tập 87 - Trang 63-89 - 1997
M. A. Katsoulakis1, P. E. Souganidis2
1Department of Mathematics and Statistics, University of Massachusetts-Amherst, Amherst
2Department of Mathematics, University of Wisconsin-Madison, Madison

Tóm tắt

We study Ising models with general spin-flip dynamics obeying the detailed balance law. After passing to suitable macroscopic limits, we obtain interfaces moving with normal velocity depending anisotropically on their principal curvatures and direction. In addition we deduce (direction-dependent) Kubo-Green-type formulas for the mobility and the Hessian of the surface tension, thus obtaining an explicit description of anisotropy in terms of microscopic quantities. The choice of dynamics affects only the mobility, a scalar function of the direction.

Tài liệu tham khảo

G. Barles and P. E. Souganidis, A new approach to front propagation: Theory and applications,Arch. Rat. Mech. Anal., to appear. M. E. Gurtin,Thermodynamics of Evolving Phase Boundaries in the Plane (Oxford University Press, Oxford, 1993). S. Osher and J. A. Sethian, Fronts moving with curvature-dependent speed: Algorithms based on Hamilton-Jacobi equations,J. Comput. Phys. 79:12–49 (1984). L. C. Evans and J. Spruck, Motion of level sets by mean curvature I,J. Diff. Geom. 33:635–681 (1991). Y.-G. Chen, Y. Gigo, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations.J. Diff. Geom. 33:749–786 (1991). G. Barles, H. M. Soner, and P. E. Souganidis, Front propagation and phase field theory,SIAM J. Cont. Opt. 31:439–469 (1993). S. Goto, Generalized motion of hypersurfaces whose growth speed depends superlinearly on the curvature tensor,Diff. Int. Eqns. 7:323–343 (1994). H. Ishii and P. E. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having superlinear growth on the curvature tensor,Tohoku Math. J. 47:227–250 (1995). H. M. Soner, Motion of a set by the curvature of its boundary,J. Diff. Eqs. 101:313–372 (1993). S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,Acta Metal. 27:1085–1095 (1979). J. Rubinstein, P. Sternberg, and J. B. Keller, Fast reaction, slow diffusion and curve shortening,SIAM J. Appl. Math. 49:116–133 (1989). L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature,Commun. Pure Appl. Math. XLV:1097–1123 (1992). P. E. Souganidis, Interface dynamics in phase transitions, inProceedings of ICM 94 (Birkhäuser, Basel, 1995), pp. 1133–1144. P. E. Souganidis,Front Propagation: Theory and Applications (Springer-Verlag, Berlin, in press). A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Glauber evolution with Kac potentials: I. Mesoscopic and macroscopic limits, interface dynamics,Nonlinearity 7:633–696 (1994). A. De Masi, P. Ferrari, and J. Lebowitz, Reaction-diffusion equations for interacting particle systems,J. Stat. Phys. 44:589–644 (1986). M. A. Katsoulakis and P. E. Souganidis, Interacting particle systems and generalized mean curvature evolution,Arch. Rat. Mech. Anal. 127:133–157 (1994). M. A. Katsoulakis and P. E. Souganidis, Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics,Commun. Math. Phys. 169:61–97 (1995). H. Spohn, Interface motion in models with stochastic dynamics,J. Stat. Phys. 71:1081–1132 (1993). P. Butta, On the validity of an Einstein relation in models of interface dynamics,J. Stat. Phys. 72:1401–1406 (1993). D. D. Vvedensky, A. Zangwill, C. N. Luse, and M. R. Wilby, Stochastic equations of motion for epitaxial growth,Phys. Rev. E 48:852–862 (1993). J. Krug, H. T. Dobbs, and S. Majaniemi, Adatom mobility for the SOS model, preprint. G. Giacomin and J. L. Lebowitz, Exact macroscopic description of phase segregation in model alloys with long range interactions,Phys. Rev. Lett. 76:1094–1097 (1996). G. Giacomin and J. L. Lebowitz, Exact macroscopic description of phase segregation in model alloys with long range interactions, preprint. G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions II: Interface motion, preprint. F. Comets, Nucleation for a long range magnetic model,Ann. Inst. H. Poincaré 23:135–178 (1987). J. Lebowitz and O. Penrose, Rigorous treatment of the van der Waals Maxwell theory of the liquid vapour transition,J. Math. Phys. 98:98–113 (1966). P. C. Hemmer and J. L. Lebowitz, Systems with weak long-range potentials, inPhase Transitions and Critical Phenomena, Vol. 5b, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976). A. De Masi and E. Presutti,Mathematical Methods for Hydrodynamic Limits (Springer-Verlag, New York, 1991). A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Stability of the interface in a model of phase separation,Proc. R. Soc. Edinb. 124A:1013–1022 (1994). P. Bates, P. Fife, X. Ren, and X. Wang, Traveling waves in a convolution model for phase transitions, preprint. A. De Masi, T. Gobron, and E. Presutti, Traveling fronts in non-local evolution equations,Arch. Rat. Mech. Anal. 132:143–205 (1995). E. Orlandi and L. Triolo, Traveling fronts in non local models for phase separation in external field, preprint. J. X. Xin, Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity,J. Dyn. Diff. Eqns. 3:541–573 (1991). J. X. Xin, Existence and uniqueness of traveling waves in reaction-diffusion equations with combustion nonlinearity,Indiana Univ. Math. J. 40:985–1008 (1991). J. X. Xin, Existence of planar flame fronts in convective diffusive periodic media,Arch. Rat. Mech. Anal. 121:205–233 (1992). O. Penrose, A mean field equation of motion for the dynamic Ising model,J. Stat. Phys. 63:975–986 (1991). R. Jerrard, Fully nonliear phase field equations and generalized mean curvature motion,Commun. PDE 20:223–265 (1995). G. Caginalp and P. Fife, Higher order phase field models and detailed anisotropy,Phys. Rev. B 34:4940–4943 (1986). H. Ishii, G. Pires, and P. E. Souganidis, Threshold dynamics type approximations to front propagation,J. Math. Soc. Japan, submitted. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Glauber evolution with Kac potentials III. Spinodal decomposition, CARR report n. 28/92 (1992). X. Chen, Generation and propagation of interfaces in reaction diffusion systems,J. Diff. Eqns. 96:116–141 (1992).