Stimulus similarity and encoding time influence incidental recognition memory in adult monkeys with selective hippocampal lesions

Learning and Memory - Tập 18 Số 3 - Trang 170-180 - 2011
Alyson Zeamer1, Martine Meunier2, Jocelyne Bachevalier3,4
1University of Texas Health Science Center-Houston, Texas 77030, USA
2Espace et Action, INSERM U864 & Universite ´Claude Bernard Lyon 1, Bron, France
3Emory University, Atlanta, GA 30329 USA
4University of Texas Health Science Center, Houston, Texas 77030, USA;

Tóm tắt

Recognition memory impairment after selective hippocampal lesions in monkeys is more profound when measured with visual paired-comparison (VPC) than with delayed nonmatching-to-sample (DNMS). To clarify this issue, we assessed the impact of stimuli similarity and encoding duration on the VPC performance in monkeys with hippocampal lesions and sham-operated controls. The novelty preference was compared for pictures of dissimilar vs. similar objects and for encoding duration of 30, 10, 5, and 1 sec. The novelty preference was spared after hippocampal lesions with dissimilar (colored or black and white [BW]) stimuli and an encoding time ≥10 sec, but declined with similar stimuli or a short encoding time of 1 or 5 sec. Therefore, the severe VPC impairment reported earlier after hippocampal damage cannot be attributed to the long encoding time used (30 sec) relative to DNMS (1–5 sec). However, it may result, at least in part, from the poorer distinctiveness of the stimuli typically used for VPC (BW slides of pictures of equal size and brightness of objects differing in shape) relative to the actual objects used for DNMS, differing in shape, color, size, brightness, and texture. This conclusion fits well with current models that view the hippocampus as a comparator capable of individualizing the representations of highly overlapping inputs.

Từ khóa


Tài liệu tham khảo

10.1016/j.bbr.2005.09.005

Alvarado M , Kazama A , Zeamer A , Bachevalier J . 2010. The effects of selective hippocampal damage on tests of oddity in rhesus macaques. Hippocampus doi: 10.1002/hipo.20827.

10.1002/(SICI)1098-1063(1996)6:5<553::AID-HIPO8>3.0.CO;2-J

10.1002/hipo.20369

10.1126/science.1152882

10.1016/j.neuron.2009.02.007

10.1002/1098-1063(2001)11:1<61::AID-HIPO1021>3.0.CO;2-Z

10.1002/(SICI)1098-1063(1999)9:5<562::AID-HIPO10>3.0.CO;2-X

10.1126/science.151.3708.354

10.1016/j.conb.2005.10.014

10.1002/hipo.20320

10.1038/12222

10.2307/1130483

10.1146/annurev.neuro.30.051606.094328

1974, Infant recognition memory: The effects of length of familiarization and type of discrimination task, Child Dev, 45, 351, 10.1111/j.1467-8624.1974.tb00603.x

1975, Early visual selectivity, Infant perception: From sensation to cognition, 2, 249

10.1016/S0896-6273(00)80315-3

10.1016/S0166-4328(01)00360-6

10.1016/j.neuropsychologia.2010.01.001

Gray JA , McNaughton N . 2000. The neuropsychology of anxiety, 2nd ed. Oxford University Press, Oxford, UK.

10.1002/hipo.20296

10.1101/lm.609807

10.1111/j.1365-2818.1987.tb02837.x

10.1037/0012-1649.22.4.477

Heuer E , Bachevalier J . 2011. Effects of selective neonatal hippocampal lesions on tests of object and spatial recognition memory in monkeys. Behav Neurosci (in press).

10.1016/j.nlm.2007.04.013

10.1002/hipo.10011

10.1037/0735-7044.121.4.742

10.1037/0012-1649.18.4.519

10.1037//0012-1649.19.3.338

10.1073/pnas.0908378107

10.1523/JNEUROSCI.0640-09.2009

10.1016/0022-0965(69)90055-1

10.1101/lm.688207

2000, Prefrontal-temporal circuitry for episodic encoding and subsequent memory, J Neurosci, 20, 6173, 10.1523/JNEUROSCI.20-16-06173.2000

10.1101/lm.663507

10.1002/hipo.20326

2009, Novelty signals: A window into hippocampal information processing, TICS, 13, 47

10.1016/j.neuropsychologia.2004.07.017

10.1002/hipo.1050

10.1037/0735-7044.110.2.266

2002, Hippocampal damage and exploratory preferences in rats: Memory for objects, places, and contexts, Learn Mem, 9, 47

1998, Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus, J Neurosci, 18, 6568, 10.1523/JNEUROSCI.18-16-06568.1998

10.1016/S0165-0270(02)00264-9

10.1523/JNEUROSCI.3763-03.2004

10.1037/0033-295X.110.4.611

10.1002/(SICI)1098-1063(1999)9:6<609::AID-HIPO1>3.0.CO;2-A

10.1016/j.neuropsychologia.2004.03.005

10.1016/j.neuropsychologia.2009.04.001

Pedhazur EJ . 1982. Multiple regression in behavioral research: Explanation and prediction, 2nd ed. Holt, Rinehart and Winston, New York.

10.1111/j.1460-9568.2004.03282.x

10.1038/nrn1052

10.1037/0012-1649.33.1.22

10.1002/dev.10161

10.2307/1129674

10.1037/0012-1649.18.5.704

10.1016/j.neuron.2006.02.015

10.1111/1467-9280.00288

10.1111/j.1460-9568.2006.05035.x

Seress L , Abraham H . 2008. Pre- and post-natal morphological development of the human hippocampal formation. In Handbook of developmental cognitive neuroscience, 2nd ed. (ed. Nelson CA , Luciana M ), pp. 187–211. The MIT Press, Cambridge, MA.

10.3758/PBR.15.2.315

10.1016/j.neuron.2009.02.008

10.1101/lm.1196508

10.1002/hipo.1073

10.1162/jocn.2006.18.10.1654

von Bonin G , Bailey P . 1947. The neocortex of Macaca mulatta. University of Illinois Press, Urbana, IL.

1999, Different contributions of the hippocampus and perirhinal cortex to recognition memory, J Neurosci, 19, 1142, 10.1523/JNEUROSCI.19-03-01142.1999

10.1523/JNEUROSCI.0022-10.2010

2000, Impaired recognition memory in monkeys after damage limited to the hippocampal region, J Neurosci, 20, 451, 10.1523/JNEUROSCI.20-01-00451.2000