Stimulation induces gradual increases in the thickness and curvature of postsynaptic density of hippocampal CA1 neurons in slice cultures
Tóm tắt
Activity can induce structural changes in glutamatergic excitatory synapses, including increase in thickness and curvature of the postsynaptic density (PSD); these structural changes can only be documented by electron microscopy. Here in organotypic hippocampal slice cultures where experimental conditions can be easily manipulated, increases in thickness and curvature of PSDs were noticeable within 30 s of stimulation and progressed with time up to 3 min. These structural changes were reversible upon returning the samples to control medium for 5–10 min. Thus, the postsynaptic density is a very dynamic structure that undergoes rapid reorganization of its components upon stimulation, and recovery upon cessation of stimulation. The gradual increase in thickness of PSD could result from a gradual translocation of some PSD proteins to the PSD, and the increase in curvature of the PSD is likely led by postsynaptic elements.
Tài liệu tham khảo
Peters A, Palay SL, Webster HD. The fine structure of the nervous system. New York: Oxford University Press; 1991.
Valtschanoff JG, Weinberg RJ. Laminar organization of the NMDA receptor complex within the postsynaptic density. J Neurosci. 2001;21:1 211–1217.
Dosemeci A, Winberg R, Reese TS, Tao-Cheng J-H. The postsynaptic density: there is more than meets the eye. Front Synaptic Neurosci. 2016;8:23.
Tao-Cheng J-H, Gallant PE, Brightman MW, Dosemeci A, Reese TS. Effects of delayed perfusion fixation on postsynaptic density and CaMKII clustering in different regions of the mouse brain. J Comp Neurol. 2007;501:731–40.
Janka Z, Jones DG. A morphometric study of cultured rat cerebral synapses exposed to different cationic media. Brain Res. 1982;241:215–25.
Dosemeci A, Tao-Cheng J-H, Vinade L, Winters CA, Pozzo-Miller L, Reese TS. Glutamate-induced transient modification of the postsynaptic density. PNAS. 2001;98:10428–32.
Dosemeci A, Vinade L, Winters C, Reese TS, Tao-Cheng JH. Inhibition of phosphatase activity prolongs NMDA-induced modification of the postsynaptic density. J Neurocytology. 2002;31:605–12.
Tao-Cheng J-H, Dosemeci A, Gallant PE, Miller S, Galbraith JA, Winters CA, Azzam R, Reese TS. Rapid turnover of spinules at synaptic terminals. Neuroscience. 2009;160:42–50.
Fukunaga Y, Nakajima E, Hatano E, Itoh S, Kashino Y, Miyazawa A. Activation of NMDA receptors thickens the postsynaptic density via proteolysis. Neurosci Res. 2015;101:6–14.
Tao-Cheng JH. Stimulation-induced structural changes at the nucleus, endoplasmic reticulum and mitochondria of hippocampal neurons. Mol Brain. 2018;11:44.
Dyson SE, Jones DG. Quantitation of terminal parameters and their inter-relationships in maturing central synapses: a perspective for experimental studies. Brain Res. 1980;183:43–59.
Sheng M, Hoogenraad CC. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem. 2007;76:823–47.
Lowenthal MS, Markey SP, Dosemeci A. Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins. J Proteome Res. 2015;14:2528–38.
Tao-Cheng JH, Dosemeci A, Gallant PE, Smith C, Reese T. Activity induced changes in the distribution of shanks at hippocampal synapses. Neuroscience. 2010;168:11–7.
Tao-Cheng JH, Yang Y, Reese TS, Dosemeci A. Differential distribution of shank and GKAP at the postsynaptic density. PLoS One. 2015;10:e0118750.
Dosemeci A, Burch A, Loo H, Toy D, Tao-Cheng JH. IRSp53 accumulates at the postsynaptic density under excitatory conditions. PLoS One. 2017;12:e0190250.
Dosemeci A, Thein S, Yang Y, Reese TS, Tao-Cheng JH. CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, accumulates at the postsynaptic density in an activity-dependent manner. Biochem Biophys Res Commun. 2013;430:245–9.
Yang Y, Tao-Cheng JH, Reese TS, Dosemeci A. SynGAP moves out of the core of the postsynaptic density upon depolarization. Neuroscience. 201(192):132–9.
Dosemeci A, Toy D, Reese TS, Tao-Cheng JH. AIDA-1 moves out of the postsynaptic density core under excitatory conditions. PLoS One. 2015;10:e0137216.
Dosemeci A, Tao-Cheng JH, Loo H, Reese TS. Distribution of densin in neurons. PLoS One. 2018;13:e0205859.
Tao-Cheng JH, Thein S, Yang Y, Reese TS, Gallant PE. Homer is concentrated at the postsynaptic density and does not redistribute after acute synaptic stimulation. Neuroscience. 2014;266:80–90.
Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature. 2001;411:801–5.
Hudmon A, Aronowski J, Kolb SJ, Waxham MN. Inactivation and self-association of Ca2+/calmodulin-dependent protein kinase II during autophosphorylation. J Biol Chem. 1996;271:8800–8.
Dosemeci A, Reese TS, Petersen J, Tao-Cheng JH. A novel particulate form of ca(2+)/calmodulin-dependent proteinkinase II in neurons. J Neurosci. 2000;20:3076–84.
Perfitt TL, Marks CR, Wang X, Nakagawa T, D. A. Jacobson DA, Colbran RJ.. Physiological effects of a direct interaction between postsynaptic proteins Shank3 and CaMKII. Program No. 462.03. 2018 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2018. Online.
Markus EJ, Petit TL. Synaptic structural plasticity: role of synaptic shape. Synapse. 1989;3:1–11.
Medvedev NI, Popov VI, Dallérac G, Davies HA, Laroche S, Kraev IV, Rodriguez Arellano JJ, Doyère V, Stewart MG. Alterations in synaptic curvature in the dentate gyrus following induction of long-term potentiation, long-term depression, and treatment with the N-methyl-D-aspartate receptor antagonist CPP. Neuroscience. 2010;171:390–7.
Santuy A, Rodríguez JR, DeFelipe J, Merchán-Pérez A. Study of the size and shape of synapses in the juvenile rat somatosensory cortex with 3D electron microscopy. eNeuro. 2018;5:0377–17.2017.
Tao-Cheng JH. Activity-related redistribution of presynaptic proteins at the active zone. Neuroscience. 2006;141:1217–24.
Heuser JE, Reese TS. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973;57:315–44.
Cohen RS, Chung SK, Pfaff DW. Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell Mol Neurobiol. 1985;5:271–84.