Statistical properties of market collective responses

The European Physical Journal B - Tập 91 - Trang 1-11 - 2018
Shanshan Wang1, Sebastian Neusüß2, Thomas Guhr1
1Fakultät für Physik, Universität Duisburg–Essen, Duisburg, Germany
2Deutsche Börse AG, Frankfurt, Germany

Tóm tắt

We empirically analyze the price and liquidity responses to trade signs, traded volumes and signed traded volumes. Utilizing the singular value decomposition, we explore the internal connections of price responses and of liquidity responses across the whole market. The statistical characteristics of their singular vectors are well described by the t location-scale distribution. Furthermore, we discuss the relation between prices and liquidity with respect to their overlapping factors. The factors of price and liquidity changes are non-random when these factors are related to the traded volumes. This means that the traded volumes play a critical role in the price change induced by the liquidity change. In contrast, the two kinds of factors are weakly overlapping when they are related to the trade signs and signed traded volumes. Hence, an imbalance of liquidity is related to the price change.

Tài liệu tham khảo

J.P. Bouchaud, Price impact, Encyclopedia of Quantitative Finance (John Wiley & Sons, Ltd, 2010) F. Lillo, J.D. Farmer, R.N. Mantegna, Nature 421, 129 (2003) J.P. Bouchaud, Y. Gefen, M. Potters, M. Wyart, Quant. Finance 4, 176 (2004) F. Lillo, S. Mike, J.D. Farmer, Phys. Rev. E 71, 066122 (2005) J. Gatheral, Quant. Finance 10, 749 (2010) J. Gatheral, A. Schied, A. Slynko, Math. Finance 22, 445 (2012) J. Gatheral, A. Schied, Dynamical models of market impact and algorithms for order execution, in Handbook on Systemic Risk, edited by J.P. Fouque, J.A. Langsam (Cambridge, 2013), pp. 579–599 A.A. Obizhaeva, J. Wang, J. Financ. Mark. 16, 1 (2013) A. Alfonsi, J.I. Acevedo, Appl. Math. Finance 21, 201 (2014) A. Alfonsi, P. Blanc, Finance Stochastics 20, 183 (2016) J. Doyne Farmer, L. Gillemot, F. Lillo, S. Mike, A. Sen, Quant. Finance 4, 383 (2004) H. Demsetz, Q. J. Econ. 82, 33 (1968) X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Nature 423, 267 (2003) B. Tóth, I. Palit, F. Lillo, J.D. Farmer, J. Econ. Dynam. Control 51, 218 (2015) J. Hasbrouck, D.J. Seppi, J. Finan. Econ. 59, 383 (2001) P. Pasquariello, C. Vega, Rev. Financ. 19, 229 (2013) A. Boulatov, T. Hendershott, D. Livdan, Rev. Econ. Stud. 80, 35 (2013) S. Wang, R. Schäfer, T. Guhr, Eur. Phys. J. B 89, 105 (2016) S. Wang, R. Schäfer, T. Guhr, Eur. Phys. J. B 89, 207 (2016) M. Benzaquen, I. Mastromatteo, Z. Eisler, J.P. Bouchaud, J. Stat. Mech. Theor. Exp. 2017, 023406 (2017) M. Schneider, F. Lillo, SSRN: https://doi.org/ssrn.com/abstract=2889029 (2016) S. Wang, S. Neusüß, T. Guhr, https://doi.org/arXiv:1710.07959 (2017) S. Wang, https://doi.org/arXiv:1701.03098 (2017) S. Wang, T. Guhr, https://doi.org/arXiv:1609.04890 (2016) F. Patzelt, J.P. Bouchaud, https://doi.org/arXiv:1706.04163 (2017) F. Patzelt, J.P. Bouchaud, https://doi.org/arXiv:1708.02411 (2017) G.W. Stewart, SIAM Rev. 35, 551 (1993) H. Samet, in Foundations of multidimensional and metric data structures (Morgan Kaufmann, 2006), p. 671 S. Banerjee, A. Roy, in Linear algebra and matrix analysis for statistics (CRC Press, 2014), p. 371 S. Jackman, in Bayesian analysis for the social sciences (John Wiley & Sons, Ltd, 2009), p. 507