Statistical points and pitfalls: growth modeling

Perspectives on Medical Education - Tập 11 Số 2 - Trang 104-107
Christy Boscardin1, Stefanie S Sebok‐Syer2, Martin Pusic3
1Department of Medicine and Anesthesia, University of California, San Francisco, San Francisco, USA
2Department of Emergency Medicine, Stanford University, Palo Alto, USA
3Department of Pediatrics, Harvard University, Boston, USA

Tóm tắt

None

Từ khóa


Tài liệu tham khảo

Muthén BO, Curran PJ. General longitudinal modeling of individual differences in experimental designs: a latent variable framework for analysis and power estimation. Psychol Methods. 1997;2:371.

Muthén BO. Beyond SEM: general latent variable modeling. Behaviormetrika. 2002;29:81–117.

Willett JB, Sayer AG. Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychol Bull. 1994;116:363.

Bryk AS, Raudenbush SW. Hierarchical linear models: applications and data analysis methods. SAGE; 1992.

Rabe-Hesketh S, Skrondal A. Multilevel and longitudinal modeling using Stata. STATA; 2008.

Xitao F, Xiaotao F. Power of latent growth modeling for detecting linear growth: number of measurements and comparison with other analytic approaches. J Exp Educ. 2005;73:121–39.

Muthén LK, Muthén BO. How to use a Monte Carlo study to decide on sample size and determine power. Struct Equ Model. 2002;9:599–620.

Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model Multidiscip J. 1999;6:1–55.

Bollen KA, Long JS. Testing structural equation models. Vol. 154. SAGE; 1993.

Curran PJ, Bauer DJ, Willoughby MT. Testing main effects and interactions in latent curve analysis. Psychol Methods. 2004;9:220.