Statistical analysis on secular records of igneous geochemistry: Implication for the early Archean plate tectonics

Geological Journal - Tập 55 Số 1 - Trang 994-1002 - 2020
He Liu1,2, Weidong Sun1,2, J. Deng1,2
1Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
2Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Tóm tắt

In recent years, application of statistical analysis to a sufficiently large geochemical database has become more and more popular to reveal the onset and evolution of plate tectonics as a consequence of the development of computer science and storage technology. Here, we introduce a robust statistical method to process a filtered geochemical dataset including predominantly continental basaltic rocks through Earth's history. The results show that the average Sr concentrations gradually increased from 3.8 to 0 Ga, indicating a progressively growing depth of magma source as a result of secular cooling of the mantle. However, the average La/Yb and Sm/Yb ratios only started to increase at ca. 3.0 Ga. Considering the La–Yb and Sm–Yb fractionations are commonly attributed to the residual garnet crystallization, we interpreted that the geotherm of the magma source of continental basaltic rocks before 3.0 Ga might be higher than the stability limit of garnet. As such, there were little or no garnets in the residue during partial melting of the upwelling asthenospheric mantle or mantle plumes before 3.0 Ga, which also implied a higher continental geotherm during that time. Such a high geotherm could not support the formation of contemporaneous high‐pressure or medium‐pressure TTGs (tonalite–trondhjemite–granodiorite) by vertical tectonic models associated with upwelling mantle heating or delaminated lower crust melting in the early Archean. We therefore conclude that the plate tectonics had occurred by ca. 3.8 Ga in a hot subduction style and contributed to the formations of high‐ and medium‐pressure TTGs subsequently.

Từ khóa


Tài liệu tham khảo

10.1007/s00410-006-0168-2

Allen J. C., 1983, The Stability of amphibole in andesite and basalt at high‐pressures, American Mineralogist, 68, 307

Allen J. C., 1975, Amphiboles in andesite and basalt: 1. Stability as a function of P‐T‐fo2, American Mineralogist, 60, 1069

10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2

10.1016/j.gca.2005.11.008

10.1016/S0016-7037(00)00389-6

10.1016/S0016-7037(98)00047-7

10.1130/G22853A.1

10.2747/0020-6814.49.3.193

10.1016/j.gsf.2014.02.005

10.1038/272240a0

10.1130/G35402.1

10.1130/GSAT01607.1

10.1016/S0191-8141(98)00073-X

Condie K. C., 1999, Oceanic plateaus and hotspot islands: Identification and role in continental growth, Lithos, 46, 1

Condie K. C., 2008, When did plate tectonics begin? Evidence from the geologic record, Geological Society of America Special Papers, 440, 281

10.2475/09.2010.01

10.1016/j.epsl.2009.03.033

10.1126/science.1216066

10.1038/ngeo2466

10.1130/0091-7613(1988)016<0314:IACCGA>2.3.CO;2

10.1016/B978-0-08-095975-7.00303-X

10.1038/nature00799

10.1126/science.aan8086

Green T. H., 1982, Andesites, 465

10.1016/0009-2541(94)90126-0

10.1130/GSATG272A.1

10.1146/annurev-earth-063016-020525

10.1029/2006GC001390

10.1016/j.epsl.2010.01.022

10.1016/0016-7037(78)90092-3

10.1007/s004100050437

10.1016/j.epsl.2017.10.031

10.1038/nature11024

10.1146/annurev-earth-050212-124208

10.1038/ngeo2707

10.1038/ngeo2707

10.1016/j.precamres.2012.01.007

10.1016/0012-821X(96)00130-6

10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2

10.1093/petrology/28.5.921

10.1130/0091-7613(2002)030<0319:SCITTG>2.0.CO;2

10.1016/j.lithos.2004.04.048

10.3406/bulmi.1977.7155

10.1093/petrology/32.5.1021

Moyen J., 2006, Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics, 149

10.1016/j.lithos.2010.09.015

10.1016/j.lithos.2012.06.010

10.1038/nature04972

10.1130/G322894.1

10.1016/0016-7037(80)90138-6

10.1016/j.precamres.2016.11.001

10.1038/362739a0

10.1016/S0009-2541(97)00150-2

10.1038/nature02031

10.1016/B978-0-08-095975-7.00301-6

10.1016/B978-0-08-095975-7.00211-4

10.1016/B978-0-08-095975-7.00321-1

10.1093/petrology/egg052

10.1126/science.1206275

10.1038/ngeo2628

10.1016/j.epsl.2009.03.003

10.1130/G21365.1

10.1130/2008.2440(13)

10.1144/GSL.SP.1989.042.01.19

10.1016/j.epsl.2007.08.021

10.1007/s11430-010-0024-0

10.1016/j.gca.2014.06.029

10.1126/science.aad5513

10.1016/0016-7037(81)90055-7

10.1016/j.chemgeo.2017.08.025

10.1016/j.precamres.2014.10.012

10.1016/j.precamres.2004.10.002

10.1016/j.lithos.2012.05.013