Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Dao động tĩnh của mạng nơ-ron tế bào mờ khoảng với độ trễ hỗn hợp dưới sự nhiễu loạn xung kích
Tóm tắt
Trong bài báo này, một lớp dao động tĩnh của mạng nơ-ron tế bào mờ khoảng (FCNNs) có độ trễ hỗn hợp dưới sự nhiễu loạn xung kích được xem xét. Độ trễ hỗn hợp bao gồm độ trễ rời rạc thay đổi theo thời gian và độ trễ phân phối không giới hạn. Bằng cách thiết lập một hàm Lyapunov đơn giản, sử dụng các kỹ thuật bất đẳng thức vi phân xung kích và các kỹ thuật LMI, một số tiêu chí đủ mới được đưa ra để đảm bảo sự tồn tại, duy nhất và độ ổn định toàn cầu theo cấp số nhân của dao động tĩnh của FCNNs. Những kết quả thu được có thể được kiểm tra dễ dàng bằng công cụ LMI trong MATLAB. Hơn nữa, các kết quả đạt được trong bài báo này rất hữu ích trong việc ứng dụng và thiết kế FCNNs, vì các tiêu chí đủ đơn giản và dễ kiểm tra trong thực tế. Một ví dụ số được đưa ra để minh họa hiệu quả của kết quả thu được.
Từ khóa
#mạng nơ-ron tế bào mờ khoảng #độ trễ hỗn hợp #dao động tĩnh #nhiễu loạn xung kích #hàm Lyapunov #bất đẳng thức vi phân #độ ổn định toàn cầuTài liệu tham khảo
Bai C (2008) Stability analysis of CohenGrossberg BAM neural networks with delays and impulses. Chaos Solitons Fractals 35:263–267
Berman A, Plemmons R (1979) Nonnegative matrices in mathematical Sciences. Academic, New York
Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in systems and control theory. SIAM, Philadelphia
Chen J, Cui B (2008) Impulsive effects on global asymptotic stability of delay BAM neural networks. Chaos Solitons Fractals 38:1115–1125
Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35(10):1257–1272
Chua LO, Yang L (1988) Cellular neural networks: applications. IEEE Trans Circuits Syst 35(10):1273–1290
Cui S, Zhao T, Guo J (2009) Global robust exponential stability for interval neural networks with delay. Chaos Solitons Fractals 42:1567–1576
Feng C, O’Reilly C, Plamondon R (2010) Permanent oscillations in a 3-node recurrent neural network model. Neurocomputing 74:274–283
Gahinet P, Nemirovski A, Laub AJ, Chilali M (1995) LMI Control Toolbox Users Guide. Mathworks, Natick
Gao M, Cui B (2009) Global robust exponential stability of discrete-time interval BAM neural networks with time-varying delays. Appl Math Model 33:1270–1284
Huang T, Li C, Zeng Z (2009) A domain attraction criterion for interval fuzzy neural networks. Comput Math Appl 58:508–513
Jiang H, Zhang L, Teng Z (2005) Existence and global exponential stability of almost periodic solution for cellular neural networks with variable coefficients and time-varying delays. IEEE Trans Neural Networks 16:1340–1351
Kwon OM, Lee SM, Ju H (2010) Park, Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays. Phys Lett A 374:1232–1241
Kwon OM, Park JH (2009) Exponential stability for uncertain neural networks with interval time-varying delays. Appl Math Comput 212:530–541
Li X (2009) Existence and global exponential stability of periodic solution for impulsive CohenGrossberg-type BAM neural networks with continuously distributed delays. Appl Math Comput 215:292–307
Li X, Shen J (2010) LMI approach for stationary oscillation of interval neural networks with discrete and distributed time-varying delays under impulsive perturbations. IEEE Trans Neural Networks 21:1555–1563
Liao XF, Yu JB (1998) Robust stability for interval Hopfield neural networks with time delay. IEEE Trans Neural Networks 9:1042–1045
Lou X, Cui B (2008) Global asymptotic stability of delay BAM neural networks with impulses based on matrix theory. Appl Math Model 32:232–239
Niculescu S (2001) Delay effects on stability: A Robust Control Approach. Springer-Verlag, New York
Qiu J (2007) Exponential stability of impulsive neural networks with time-varying delays and reactiondiffusion terms. Neurocomputing 70:1102–1108
Qiu F, Cui B, Wu W (2009) Global exponential stability of high order recurrent neural network with time-varying delays. Appl Math Model 33:198–210
Song Q, Wang Z (2009) Dynamical behaviors of fuzzy reaction diffusion periodic cellular neural networks with variable coefficients and delays. Appl Math Model 33:3533–3545
Tan M, Tan Y (2009) Global exponential stability of periodic solution of neural network with variable coefficients and time-varying delays. Appl Math Model 33:373–385
Tian J, Zhou X (2010) Improved asymptotic stability criteria for neural networks with interval time-varying delay. Expert Syst Appl 37:7521–7525
Xia Y, Cao J, Lin M (2007) New results on the existence and uniqueness of almost periodic solution for BAM neural networks with continuously distributed delays. Chaos Solitons Fractals 31:928–936
Yang T, Yang LB, Wu CW, Chua LO (1996) Fuzzy cellular neural networks: theory. In: Proceedings of the IEEE international workshop on cellular neural networks and applications, pp 181–186
Yang T, Yang LB, Wu CW, Chua LO (1996) Fuzzy cellular neural networks: applications. In: Proceedings of the IEEE international workshop on cellular neural networks and applications, pp 225–230
Yang T, Yang LB (1996) Global stability of fuzzy cellular neural network. IEEE Trans Circuits Syst I 43:880–883
Zhang Y (2009) Stationary oscillation for cellular neural networks with time delays and impulses. Math Comput Simul 79:3174–3178
Zhang Y (2009) Stationary oscillation for nonautonomous bidirectional associative memory neural networks with impulse. Chaos Solitons Fractals 41:1760–1763
Zhang J, Gui Z (2009) Periodic solutions of nonautonomous cellular neural networks with impulses and delays. Nonlinear Anal Real World Appl 10:1891–1903
Zhang Z, Li C, Liao X (2007) Delay-dependent robust stability analysis for interval linear time-variant systems with delays and application to delayed neural networks. Neurocomputing 70:2980–2995
Zhang Y, Wang Q (2009) Stationary oscillation for high-order Hopfield neural networks with time delays and impulses. J Comput Appl Math 231:473–477
Zhao Y, Gao H, Lam J, Chen K (2009) Stability analysis of discrete time recurrent neural networks with stochastic delay. IEEE Trans Neural Networks 20:1330–1339