Dao động tĩnh của mạng nơ-ron tế bào mờ khoảng với độ trễ hỗn hợp dưới sự nhiễu loạn xung kích

Neural Computing and Applications - Tập 22 - Trang 1645-1654 - 2012
P. Balasubramaniam1,2, M. Kalpana1, R. Rakkiyappan3
1Department of Mathematics, Gandhigram Rural Institute, Deemed University, Gandhigram, India
2Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malasiya
3Department of Mathematics, Bharathiar University, Coimbatore, India

Tóm tắt

Trong bài báo này, một lớp dao động tĩnh của mạng nơ-ron tế bào mờ khoảng (FCNNs) có độ trễ hỗn hợp dưới sự nhiễu loạn xung kích được xem xét. Độ trễ hỗn hợp bao gồm độ trễ rời rạc thay đổi theo thời gian và độ trễ phân phối không giới hạn. Bằng cách thiết lập một hàm Lyapunov đơn giản, sử dụng các kỹ thuật bất đẳng thức vi phân xung kích và các kỹ thuật LMI, một số tiêu chí đủ mới được đưa ra để đảm bảo sự tồn tại, duy nhất và độ ổn định toàn cầu theo cấp số nhân của dao động tĩnh của FCNNs. Những kết quả thu được có thể được kiểm tra dễ dàng bằng công cụ LMI trong MATLAB. Hơn nữa, các kết quả đạt được trong bài báo này rất hữu ích trong việc ứng dụng và thiết kế FCNNs, vì các tiêu chí đủ đơn giản và dễ kiểm tra trong thực tế. Một ví dụ số được đưa ra để minh họa hiệu quả của kết quả thu được.

Từ khóa

#mạng nơ-ron tế bào mờ khoảng #độ trễ hỗn hợp #dao động tĩnh #nhiễu loạn xung kích #hàm Lyapunov #bất đẳng thức vi phân #độ ổn định toàn cầu

Tài liệu tham khảo

Bai C (2008) Stability analysis of CohenGrossberg BAM neural networks with delays and impulses. Chaos Solitons Fractals 35:263–267 Berman A, Plemmons R (1979) Nonnegative matrices in mathematical Sciences. Academic, New York Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in systems and control theory. SIAM, Philadelphia Chen J, Cui B (2008) Impulsive effects on global asymptotic stability of delay BAM neural networks. Chaos Solitons Fractals 38:1115–1125 Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35(10):1257–1272 Chua LO, Yang L (1988) Cellular neural networks: applications. IEEE Trans Circuits Syst 35(10):1273–1290 Cui S, Zhao T, Guo J (2009) Global robust exponential stability for interval neural networks with delay. Chaos Solitons Fractals 42:1567–1576 Feng C, O’Reilly C, Plamondon R (2010) Permanent oscillations in a 3-node recurrent neural network model. Neurocomputing 74:274–283 Gahinet P, Nemirovski A, Laub AJ, Chilali M (1995) LMI Control Toolbox Users Guide. Mathworks, Natick Gao M, Cui B (2009) Global robust exponential stability of discrete-time interval BAM neural networks with time-varying delays. Appl Math Model 33:1270–1284 Huang T, Li C, Zeng Z (2009) A domain attraction criterion for interval fuzzy neural networks. Comput Math Appl 58:508–513 Jiang H, Zhang L, Teng Z (2005) Existence and global exponential stability of almost periodic solution for cellular neural networks with variable coefficients and time-varying delays. IEEE Trans Neural Networks 16:1340–1351 Kwon OM, Lee SM, Ju H (2010) Park, Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays. Phys Lett A 374:1232–1241 Kwon OM, Park JH (2009) Exponential stability for uncertain neural networks with interval time-varying delays. Appl Math Comput 212:530–541 Li X (2009) Existence and global exponential stability of periodic solution for impulsive CohenGrossberg-type BAM neural networks with continuously distributed delays. Appl Math Comput 215:292–307 Li X, Shen J (2010) LMI approach for stationary oscillation of interval neural networks with discrete and distributed time-varying delays under impulsive perturbations. IEEE Trans Neural Networks 21:1555–1563 Liao XF, Yu JB (1998) Robust stability for interval Hopfield neural networks with time delay. IEEE Trans Neural Networks 9:1042–1045 Lou X, Cui B (2008) Global asymptotic stability of delay BAM neural networks with impulses based on matrix theory. Appl Math Model 32:232–239 Niculescu S (2001) Delay effects on stability: A Robust Control Approach. Springer-Verlag, New York Qiu J (2007) Exponential stability of impulsive neural networks with time-varying delays and reactiondiffusion terms. Neurocomputing 70:1102–1108 Qiu F, Cui B, Wu W (2009) Global exponential stability of high order recurrent neural network with time-varying delays. Appl Math Model 33:198–210 Song Q, Wang Z (2009) Dynamical behaviors of fuzzy reaction diffusion periodic cellular neural networks with variable coefficients and delays. Appl Math Model 33:3533–3545 Tan M, Tan Y (2009) Global exponential stability of periodic solution of neural network with variable coefficients and time-varying delays. Appl Math Model 33:373–385 Tian J, Zhou X (2010) Improved asymptotic stability criteria for neural networks with interval time-varying delay. Expert Syst Appl 37:7521–7525 Xia Y, Cao J, Lin M (2007) New results on the existence and uniqueness of almost periodic solution for BAM neural networks with continuously distributed delays. Chaos Solitons Fractals 31:928–936 Yang T, Yang LB, Wu CW, Chua LO (1996) Fuzzy cellular neural networks: theory. In: Proceedings of the IEEE international workshop on cellular neural networks and applications, pp 181–186 Yang T, Yang LB, Wu CW, Chua LO (1996) Fuzzy cellular neural networks: applications. In: Proceedings of the IEEE international workshop on cellular neural networks and applications, pp 225–230 Yang T, Yang LB (1996) Global stability of fuzzy cellular neural network. IEEE Trans Circuits Syst I 43:880–883 Zhang Y (2009) Stationary oscillation for cellular neural networks with time delays and impulses. Math Comput Simul 79:3174–3178 Zhang Y (2009) Stationary oscillation for nonautonomous bidirectional associative memory neural networks with impulse. Chaos Solitons Fractals 41:1760–1763 Zhang J, Gui Z (2009) Periodic solutions of nonautonomous cellular neural networks with impulses and delays. Nonlinear Anal Real World Appl 10:1891–1903 Zhang Z, Li C, Liao X (2007) Delay-dependent robust stability analysis for interval linear time-variant systems with delays and application to delayed neural networks. Neurocomputing 70:2980–2995 Zhang Y, Wang Q (2009) Stationary oscillation for high-order Hopfield neural networks with time delays and impulses. J Comput Appl Math 231:473–477 Zhao Y, Gao H, Lam J, Chen K (2009) Stability analysis of discrete time recurrent neural networks with stochastic delay. IEEE Trans Neural Networks 20:1330–1339