Static repair of multiple cracked beam using piezoelectric patches
Tóm tắt
Từ khóa
#multiple cracked beam #piezoelectric patches #static repairTài liệu tham khảo
R. Hou and Y. Xia. Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019. Journal of Sound and Vibration, 491, (2021).
W. H. Duan, Q. Wang, and S. T. Quek. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples. Materials, 3, (2010), pp. 5169–5194.
Q. Wang, S. T. Quek, and K. M. Liew. On the repair of a cracked beam with a piezoelectric patch. Smart Materials and Structures, 11, (2002), pp. 404–410.
Q. Wang, W. H. Duan, and S. T. Quek. Repair of notched beam under dynamic load using piezoelectric patch. International Journal of Mechanical Sciences, 46, (2004), pp. 1517–1533.
Q.Wang and S. T. Quek. Repair of delaminated beams via piezoelectric patches. Smart Materials and Structures, 13, (2004), pp. 1222–1229.
Q. Wang and S. T. Quek. Repair of cracked column under axially compressive load via piezoelectric patch. Computers & Structures, 83, (2005), pp. 1355–1363.
Q. Wang, G. Y. Zhou, and S. T. Quek. Repair of Delaminated Beams Subjected to Compressive Force via Piezoelectric Layers. Advances in Structural Engineering, 8, (2005), pp. 411–425.
W. H. Duan, S. T. Quek, and Q. Wang. Finite element analysis of the piezoelectric-based repair of a delaminated beam. Smart Materials and Structures, 17, (2007).
N. Wu and Q. Wang. Repair of vibrating delaminated beam structures using piezoelectric patches. Smart Materials and Structures, 19, (2010).
N. Wu and Q. Wang. Repair of a delaminated plate under static loading with piezoelectric patches. Smart Materials and Structures, 19, (2010).
A. Ariaei, S. Ziaei-Rad, and M. Ghayour. Repair of a cracked Timoshenko beam subjected to a moving mass using piezoelectric patches. International Journal of Mechanical Sciences, 52, (2010), pp. 1074–1091.
T. J.-C. Liu. Crack repair performance of piezoelectric actuator estimated by slope continuity and fracture mechanics. Engineering Fracture Mechanics, 75, (2008), pp. 2566–2574.
T. G. Chondros, A. D. Dimarogonas, and J. Yao. A continuous cracked beam vibration theory. Journal of Sound and Vibration, 215, (1998), pp. 17–34.
P. F. Rizos, N. Aspragathos, and A. D. Dimarogonas. Identification of crack location and magnitude in a cantilever beam from the vibration modes. Journal of Sound and Vibration, 138, (1990), pp. 381–388.
H. S. Tzou and C. I. Tseng. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach. Journal of Sound and Vibration, 138, (1990), pp. 17–34.
C. N. Thai, T. T. Ich, and T. L. Xuan. Static and Dynamic Analysis of Piezoelectric Laminated Composite Beams and Plates. In Perovskite and Piezoelectric Materials. IntechOpen, (2021).
C. Q. Thang. Finite element method. Science and Technics Publishing House, Vietnam, (1997).
CALFEM. A finite element toolbox to MATLAB Version 3.3. Structural Mechanics, LTH, Sweden. Printed by JABE Offset, Lund, Sweden.
D. Y. Zheng and N. J. Kessissoglou. Free vibration analysis of a cracked beam by finite element method. Journal of Sound and Vibration, 273, (2004), pp. 457–475.