Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chụp hình ảnh tưới máu cơ tim bằng CT tĩnh: chất lượng hình ảnh, artefact bao gồm phân bố và hiệu suất chẩn đoán so với 82Rb PET
Tóm tắt
Chụp cắt lớp vi tính (CT) tưới máu cơ tim tĩnh với rubidium-82 (82Rb PET) được coi là tiêu chuẩn tham chiếu không xâm lấn cho việc đánh giá tưới máu cơ tim ở bệnh nhân bệnh động mạch vành (CAD). Mục tiêu chính của chúng tôi là so sánh hiệu suất chẩn đoán của CT-MPI tĩnh với hình ảnh tưới máu cơ tim PET-MPI 82Rb để xác định thiếu máu cơ tim.
Bốn mươi bốn bệnh nhân nghi ngờ hoặc đã được chẩn đoán mắc CAD đã trải qua cả CT-MPI tĩnh và PET-MPI 82Rb trong trạng thái nghỉ và trong quá trình stress dược lý. Mức độ và độ nghiêm trọng của các khiếm khuyết tưới máu trên PET-MPI được đánh giá để thu được điểm tổng hợp khi stress, điểm tổng hợp khi nghỉ và điểm chênh lệch tổng hợp. Mức độ và độ nghiêm trọng của các khiếm khuyết tưới máu trên CT-MPI đã được đánh giá bằng mắt sử dụng cùng một thang điểm. CT-MPI được so sánh với PET-MPI như tiêu chuẩn vàng dựa trên từng lãnh thổ và từng bệnh nhân.
Trên cơ sở từng bệnh nhân, có sự đồng thuận vừa phải giữa CT-MPI và PET-MPI với hệ số trọng số 0,49 cho việc phát hiện các bất thường tưới máu do stress gây ra. Sử dụng PET-MPI làm tham chiếu, CT-MPI tĩnh có độ nhạy 89% (SS), độ đặc hiệu 58% (SP), độ chính xác 71% (AC), giá trị dự đoán âm tính 88% (NPV) và giá trị dự đoán dương tính 59% (PPV) để chẩn đoán các khiếm khuyết tưới máu khi stress-nghỉ trên cơ sở từng bệnh nhân. Trong phân tích theo từng lãnh thổ, CT-MPI có độ nhạy 73% SS, độ đặc hiệu 65% SP, độ chính xác 67% AC, giá trị dự đoán âm tính 90,8% NPV và giá trị dự đoán dương tính 34% PPV để chẩn đoán các khiếm khuyết tưới máu. CT-MPI có độ nhạy cao và độ chính xác tổng thể tốt cho việc chẩn đoán CAD có ý nghĩa chức năng sử dụng PET-MPI 82Rb làm tiêu chuẩn tham chiếu. CT-MPI có thể đóng vai trò quan trọng trong việc đánh giá ý nghĩa chức năng của CAD, đặc biệt khi được kết hợp với CCTA.
Từ khóa
Tài liệu tham khảo
Abbara S, Blanke P, Maroules CD et al (2016) SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr 10:435–449. https://doi.org/10.1016/j.jcct.2016.10.002
Bettencourt N, Chiribiri A, Schuster A et al (2013) Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol 61:1099–1107. https://doi.org/10.1016/j.jacc.2012.12.020
Blankstein R, Rogers IS, Cury RC (2009) Practical tips and tricks in cardiovascular computed tomography: diagnosis of myocardial infarction. J Cardiovasc Comput Tomogr 3:104–111. https://doi.org/10.1016/j.jcct.2008.10.014
Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732. https://doi.org/10.1016/j.jacc.2008.07.031
Celeng C, Leiner T, Maurovich-Horvat P et al (2019) Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease: a meta-analysis. JACC Cardiovasc Imaging 12:1316–1325. https://doi.org/10.1016/j.jcmg.2018.07.022
Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542
Chow BJW, Wells GA, Chen L et al (2010) Prognostic value of 64-slice cardiac computed tomography: severity of coronary artery disease, coronary atherosclerosis, and left ventricular ejection fraction. J Am Coll Cardiol 55:1017–1028. https://doi.org/10.1016/j.jacc.2009.10.039
Coenen A, Rossi A, Lubbers MM et al (2017) Integrating CT myocardial perfusion and CT-FFR in the work-up of coronary artery disease. JACC Cardiovasc Imaging 10:760–770. https://doi.org/10.1016/j.jcmg.2016.09.028
Cury RC, Magalhães TA, Borges AC et al (2010) Dipyridamole stress and rest myocardial perfusion by 64-detector row computed tomography in patients with suspected coronary artery disease. Am J Cardiol 106:310–315. https://doi.org/10.1016/j.amjcard.2010.03.025
Danad I, Szymonifka J, Schulman-Marcus J, Min JK (2016) Static and dynamic assessment of myocardial perfusion by computed tomography. Eur Heart J Cardiovasc Imaging 17:836–844. https://doi.org/10.1093/ehjci/jew044
Dantas RN, Assuncao AN, Marques IA et al (2018) Myocardial perfusion in patients with suspected coronary artery disease: comparison between 320-MDCT and rubidium-82 PET. Eur Radiol 28:2665–2674. https://doi.org/10.1007/s00330-017-5257-2
De Bruyne B, Pijls NHJ, Kalesan B et al (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367:991–1001. https://doi.org/10.1056/NEJMoa1205361
Di Carli MF, Dorbala S, Curillova Z et al (2007) Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol 14:799–809. https://doi.org/10.1016/j.nuclcard.2007.07.012
Eck BL, Fahmi R, Levi J et al (2016) Comparison of quantitative myocardial perfusion imaging CT to fluorescent microsphere-based flow from high-resolution cryo-images. Proc SPIE Int Soc Opt Eng 9788:97882F. https://doi.org/10.1117/12.2217027
Gaemperli O, Schepis T, Valenta I et al (2008) Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology 248:414–423. https://doi.org/10.1148/radiol.2482071307
Guo W, Lin Y, Taniguchi A et al (2021) Prospective comparison of integrated on-site CT-fractional flow reserve and static CT perfusion with coronary CT angiography for detection of flow-limiting coronary stenosis. Eur Radiol 31:5096–5105. https://doi.org/10.1007/s00330-020-07508-y
Gupta M, Kadakia J, Jug B et al (2013) Detection and quantification of myocardial perfusion defects by resting single-phase 64-slice cardiac computed tomography angiography compared with SPECT myocardial perfusion imaging. Coron Artery Dis 24:290–297. https://doi.org/10.1097/MCA.0b013e32835f2fe5
Hachamovitch R, Hayes SW, Friedman JD et al (2003) Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 107:2900–2907. https://doi.org/10.1161/01.CIR.0000072790.23090.41
Han D, Lee JH, Rizvi A et al (2018) Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: a machine learning approach. J Nucl Cardiol 25:223–233. https://doi.org/10.1007/s12350-017-0834-y
Ihdayhid AR, Sakaguchi T, Linde JJ et al (2018) Performance of computed tomography-derived fractional flow reserve using reduced-order modelling and static computed tomography stress myocardial perfusion imaging for detection of haemodynamically significant coronary stenosis. Eur Heart J Cardiovasc Imaging 19:1234–1243. https://doi.org/10.1093/ehjci/jey114
Iwasaki K, Matsumoto T (2011) Myocardial perfusion defect in patients with coronary artery disease demonstrated by 64-multidetector computed tomography at rest. Clin Cardiol 34:454–460. https://doi.org/10.1002/clc.20908
Jaarsma C, Leiner T, Bekkers SC et al (2012) Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol 59:1719–1728. https://doi.org/10.1016/j.jacc.2011.12.040
Jiménez-Navarro M, Alonso-Briales JH, Hernández García MJ et al (2001) Measurement of fractional flow reserve to assess moderately severe coronary lesions: correlation with dobutamine stress echocardiography. J Interv Cardiol 14:499–504
Kachenoura N, Gaspar T, Lodato JA et al (2009) Combined assessment of coronary anatomy and myocardial perfusion using multidetector computed tomography for the evaluation of coronary artery disease. Am J Cardiol 103:1487–1494. https://doi.org/10.1016/j.amjcard.2009.02.005
Kikuchi Y, Oyama-Manabe N, Naya M et al (2014) Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with 15O–H2O PET. Eur Radiol 24:1547–1556. https://doi.org/10.1007/s00330-014-3164-3
Ko BS, Linde JJ, Ihdayhid AR et al (2019) Non-invasive CT-derived fractional flow reserve and static rest and stress CT myocardial perfusion imaging for detection of haemodynamically significant coronary stenosis. Int J Cardiovasc Imaging 35:2103–2112. https://doi.org/10.1007/s10554-019-01658-x
Koo HJ, Yang DH, Kim Y-H et al (2016) CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve. Int J Cardiovasc Imaging 32(Suppl 1):1–19. https://doi.org/10.1007/s10554-015-0825-5
Litt HI, Gatsonis C, Snyder B et al (2012) CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med 366:1393–1403. https://doi.org/10.1056/NEJMoa1201163
Lubbers DD, Kuijpers D, Bodewes R et al (2011) Inter-observer variability of visual analysis of “stress”-only adenosine first-pass myocardial perfusion imaging in relation to clinical experience and reading criteria. Int J Cardiovasc Imaging 27:557–562. https://doi.org/10.1007/s10554-010-9703-3
Maddahi J, Packard RRS (2014) Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med 44:333–343. https://doi.org/10.1053/j.semnuclmed.2014.06.011
Mc Ardle BA, Dowsley TF, deKemp RA et al (2012) Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease? a systematic review and meta-analysis. J Am Coll Cardiol 60:1828–1837. https://doi.org/10.1016/j.jacc.2012.07.038
Meijboom WB, Van Mieghem CAG, van Pelt N et al (2008) Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52:636–643. https://doi.org/10.1016/j.jacc.2008.05.024
Meinel FG, De Cecco CN, Schoepf UJ et al (2013) First–Arterial-pass dual-energy CT for assessment of myocardial blood supply: Do we need rest, stress, and delayed acquisition? Comparison with SPECT. Radiology 270:708–716. https://doi.org/10.1148/radiol.13131183
Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336. https://doi.org/10.1056/NEJMoa0806576
Osawa K, Miyoshi T, Koyama Y et al (2014) Additional diagnostic value of first-pass myocardial perfusion imaging without stress when combined with 64-row detector coronary CT angiography in patients with coronary artery disease. Heart 100:1008–1015. https://doi.org/10.1136/heartjnl-2013-305468
Osawa K, Miyoshi T, Miki T et al (2016) Diagnostic performance of first-pass myocardial perfusion imaging without stress with computed tomography (CT) compared with coronary CT angiography alone, with fractional flow reserve as the reference standard. PLoS ONE 11:e0149170. https://doi.org/10.1371/journal.pone.0149170
Patel AR, Bamberg F, Branch K et al (2020) Society of cardiovascular computed tomography expert consensus document on myocardial computed tomography perfusion imaging. J Cardiovasc Comput Tomogr 14:87–100. https://doi.org/10.1016/j.jcct.2019.10.003
Pijls NH, De Bruyne B, Peels K et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703–1708. https://doi.org/10.1056/NEJM199606273342604
Pontone G, Baggiano A, Andreini D et al (2019a) Stress computed tomography perfusion versus fractional flow reserve CT derived in suspected coronary artery disease: the PERFECTION study. JACC Cardiovasc Imaging 12:1487–1497. https://doi.org/10.1016/j.jcmg.2018.08.023
Pontone G, Baggiano A, Andreini D et al (2019b) Dynamic stress computed tomography perfusion with a whole-heart coverage scanner in addition to coronary computed tomography angiography and fractional flow reserve computed tomography derived. J Am Coll Cardiol Img 12:2460–2471. https://doi.org/10.1016/j.jcmg.2019.02.015
Rochitte CE, Magalhães TA (2019) Functional significance of coronary stenosis: Is it about the real or virtual physiology? JACC Cardiovasc Imaging 12:1498–1500. https://doi.org/10.1016/j.jcmg.2018.09.005
Salcedo J, Kern MJ (2009) Effects of caffeine and theophylline on coronary hyperemia induced by adenosine or dipyridamole. Catheter Cardiovasc Interv 74:598–605. https://doi.org/10.1002/ccd.22030
Takx RAP, Blomberg BA, Aidi HE et al (2015) Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging 8:e002666. https://doi.org/10.1161/CIRCIMAGING.114.002666
Tamarappoo BK, Dey D, Nakazato R et al (2010) Comparison of the extent and severity of myocardial perfusion defects measured by CT coronary angiography and SPECT myocardial perfusion imaging. JACC Cardiovasc Imaging 3:1010–1019. https://doi.org/10.1016/j.jcmg.2010.07.011
Williams MC, Mirsadraee S, Dweck MR et al (2017) Computed tomography myocardial perfusion vs (15)O-water positron emission tomography and fractional flow reserve. Eur Radiol 27:1114–1124. https://doi.org/10.1007/s00330-016-4404-5
Yang DH, Kim Y-H, Roh JH et al (2017) Diagnostic performance of on-site CT-derived fractional flow reserve versus CT perfusion. Eur Heart J Cardiovasc Imaging 18:432–440. https://doi.org/10.1093/ehjci/jew094
Ziadi MC, Dekemp RA, Williams KA et al (2011) Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 58:740–748. https://doi.org/10.1016/j.jacc.2011.01.065