State-to-state rotational energy transfer in methane (13CD4) from infrared double-resonance experiments with a tunable diode laser

Journal of Chemical Physics - Tập 88 Số 11 - Trang 6838-6852 - 1988
Bernard R. Foy1, J. Hetzler1, G. Millot1, J. I. Steinfeld1
1Department of Chemistry and G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Tóm tắt

An infrared double resonance laser spectroscopic technique is used to study state-resolved rotational and vibrational energy transfer in the isotopically substituted methane molecule,13CD4 . Molecules are prepared in a selected rovibrational state by CO2 laser pumping, with the quantum numbers v, J, and Cn completely specified. Measurements of both the total rate of depopulation by collisions, and the rates of transfer into specific final rovibrational states (v′, J′, Cn′ ) are carried out using time-resolved tunable diode laser absorption spectroscopy. The depopulation rates due to collisions between methane and the rare gases are on the order of the Lennard-Jones collision frequencies. Self-relaxation is slightly more efficient than the Lennard-Jones estimate. The rather small relaxation rates are characteristic of a short-range potential, or ‘‘strong-collision’’ regime, expected for a molecule without a dipole moment. The state-to-state energy transfer measurements reveal a dramatic selectivity of rotational energy transfer pathways with respect to the fine-structure rotational states Cn . Relaxation occurs through a surprisingly small subset of the energetically accessible pathways. Also suggested is a preference for population transfer to occur within the initial vibrational angular momentum sublevel of the ν4 (F2 ) vibrational state, which has three sublevels in consequence of Coriolis interaction. This preference can be formulated as a propensity for Δ(R−J)=0 transitions. We deduce that large changes of J(ΔJ∼5) can occur in single collisions between methane molecules, based on a simple kinetic model of the data. This is also characteristic of

short-range collisions in which it is likely that no single multipolar interaction dominates. Collisional relaxation between the ν4 and ν2 bending vibrations proceeds more slowly than rotational relaxation, but as fast as transfer among the closely grouped stretching and bend-overtone levels, measured previously in CH4 . No evidence for rotationally specific V–V transfer is found. We discuss an exhaustive spectroscopic analysis of 13CD4 that provides unambiguous spectral assignments for use in detecting vibrationally excited molecules (v4 =1) in specific rotational states.

Từ khóa


Tài liệu tham khảo

1974, Annu. Rev. Phys. Chem., 25, 275, 10.1146/annurev.pc.25.100174.001423

1982, J. Chem. Phys., 71, 3648

1982, J. Chem. Phys., 77, 3824, 10.1063/1.444357

1984, J. Chem. Phys., 81, 4267, 10.1063/1.447435

1962, Trans. Faraday Soc., 58, 2336, 10.1039/TF9625802336

1974, Physica, 78, 457, 10.1016/0031-8914(74)90374-7

1966, J. Chem. Phys., 45, 1066, 10.1063/1.1727661

1968, J. Chem. Phys., 48, 14, 10.1063/1.1664460

1968, J. Chem. Phys., 49, 1111, 10.1063/1.1670199

1976, J. Chem. Phys., 52, 2339

1976, J. Chem. Phys., 65, 2339, 10.1063/1.433346

1973, J. Chem. Phys., 58, 2004, 10.1063/1.1679464

1974, J. Chem. Phys., 60, 1564, 10.1063/1.1681231

1984, Chem. Phys., 91, 341, 10.1016/0301-0104(84)80067-1

1986, Chem. Phys. Lett., 127, 118, 10.1016/S0009-2614(86)80238-X

1981, Chem. Phys., 57, 441, 10.1016/0301-0104(81)80223-6

1985, Mol. Phys., 55, 1233, 10.1080/00268978500102001

1984, J. Chem. Phys., 80, 1367, 10.1063/1.446821

1986, J. Quant. Spectrosc. Radiat. Transfer, 36, 365, 10.1016/0022-4073(86)90061-0

1985, J. Mol. Spectrosc., 112, 363, 10.1016/0022-2852(85)90168-7

1984, J. Chem. Phys., 80, 3499, 10.1063/1.447109

1985, Chem. Phys. Lett., 118, 464, 10.1016/0009-2614(85)85333-1

1985, Appl. Spectrosc., 39, 63, 10.1366/0003702854249231

1977, Can. J. Phys., 55, 1802, 10.1139/p77-221

1980, J. Mol. Spectrosc., 79, 255, 10.1016/0022-2852(80)90213-1

1985, J. Mol. Spectrosc., 111, 235, 10.1016/0022-2852(85)90004-9

1982, J. Mol. Spectrosc., 93, 551

1982, J. Mol. Spectrosc., 92, 229, 10.1016/0022-2852(82)90096-0

1983, J. Mol. Spectrosc., 99, 63, 10.1016/0022-2852(83)90293-X

1988, J. Mol. Spectrosc., 127, 156, 10.1016/0022-2852(88)90016-1

1986, J. Chem. Phys., 85, 6234, 10.1063/1.451493

1973, Adv. At. Mol. Phys., 9, 127

1935, J. Chem. Phys., 3, 276, 10.1063/1.1749653

1986, Annu. Rev. Phys. Chem., 37, 223, 10.1146/annurev.pc.37.100186.001255

1987, J. Chem. Phys., 87, 1895, 10.1063/1.453207

1984, Chem. Phys. Lett., 107, 168, 10.1016/0009-2614(84)85693-6

1987, J. Chem. Phys., 86, 3380, 10.1063/1.451996

1968, J. Chem. Phys., 48, 4919, 10.1063/1.1668157

1984, Sov. Phys. JETP, 59, 482

1985, J. Chem. Phys., 82, 3470, 10.1063/1.448925

1988, J. Chem. Phys., 88, 6742, 10.1063/1.454418

1983, J. Chem. Phys., 78, 4915, 10.1063/1.445401

1983, Chem. Phys. Lett., 98, 319, 10.1016/0009-2614(83)80215-2

1984, J. Phys. Chem., 88, 5135, 10.1021/j150666a001

1984, Chem. Phys., 88, 365, 10.1016/0301-0104(84)87003-2

1985, Mol. Phys., 56, 363, 10.1080/00268978500102371

1985, J. Chem. Phys., 83, 5656, 10.1063/1.449689

1981, J. Chem. Phys., 74, 1707, 10.1063/1.441313