Staphylococcus aureus enterotoxins induce FOXP3 in neoplastic T cells in Sézary syndrome

Blood Cancer Journal - Tập 10 Số 5
Andreas Willerslev-Olsen1,2, Terkild B. Buus1,2, Claudia Nastasi1,2, Edda Blümel1,2, Maria Gluud1,2, Charlotte M. Bonefeld1,2, Carsten Geisler1,2, Lise M. Lindahl3, Maarten H. Vermeer4, Mariusz A. Wasik5, Lars Iversen3, Jürgen C. Becker6, Mads Hald Andersen7, Lise Mette Rahbek Gjerdrum8, Ivan V. Litvinov9, Thomas Litman1,2, Thorbjørn Krejsgaard1,2, Anders Woetmann1,2, Niels Ødum1,2
1Department of Immunology and Microbiology
2LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
3Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
4Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
5Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
6Department of Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital of Essen, Essen, Germany
7Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
8Department of Pathology, Zealand University Hospital, Roskilde, Denmark
9Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada

Tóm tắt

AbstractSézary syndrome (SS) is a heterogeneous leukemic subtype of cutaneous T-cell lymphoma (CTCL) with generalized erythroderma, lymphadenopathy, and a poor prognosis. Advanced disease is invariably associated with severe immune dysregulation and the majority of patients die from infectious complications caused by microorganisms such as,Staphylococcus aureus, rather than from the lymphoma per se. Here, we examined if staphylococcal enterotoxins (SE) may shape the phenotype of malignant SS cells, including expression of the regulatory T-cell-associated marker FOXP3. Our studies with primary and cultured malignant cells show that SE induce expression of FOXP3 in malignant cells when exposed to nonmalignant cells. Mutations in the MHC class II binding domain of SE-A (SEA) largely block the effect indicating that the response relies at least in part on the MHC class II-mediated antigen presentation. Transwell experiments show that the effect is induced by soluble factors, partly blocked by anti-IL-2 antibody, and depends on STAT5 activation in malignant cells. Collectively, these findings show that SE stimulate nonmalignant cells to induce FOXP3 expression in malignant cells. Thus, differences in exposure to environmental factors, such as bacterial toxins may explain the heterogeneous FOXP3 expression in malignant cells in SS.

Từ khóa


Tài liệu tham khảo

Berg, S., Villasenor-Park, J., Haun, P. & Kim, E. J. Multidisciplinary management of mycosis Fungoides/Sezary Syndrome. Curr. Hematol. Malig. Rep. 12, 234–243 (2017).

Kim, E. J. et al. Immunopathogenesis and therapy of cutaneous T cell lymphoma. J. Clin. Investig. 115, 798–812 (2005).

Girardi, M., Heald, P. W. & Wilson, L. D. The pathogenesis of mycosis fungoides. N. Engl. J. Med. 350, 1978–1988 (2004).

Wang, L. et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat. Genet. 47, 1426–1434 (2015).

Ungewickell, A. et al. Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat. Genet. 47, 1056–1060 (2015).

da Silva Almeida, A. C. et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat. Genet. 47, 1465–1470 (2015).

Choi, J. et al. Genomic landscape of cutaneous T cell lymphoma. Nat. Genet. 47, 1011–1019 (2015).

Scarisbrick, J. J., Woolford, A. J., Russell-Jones, R. & Whittaker, S. J. Loss of heterozygosity on 10q and microsatellite instability in advanced stages of primary cutaneous T-cell lymphoma and possible association with homozygous deletion of PTEN. Blood 95, 2937–2942 (2000).

Mao, X. et al. Molecular cytogenetic characterization of Sezary syndrome. Genes Chromosomes Cancer 36, 250–260 (2003).

Bastidas Torres, A. N. et al. Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides. Genes Chromosomes Cancer 57, 653–664 (2018).

Buus, T. B. et al. Single-cell heterogeneity in Sezary syndrome. Blood Adv. 2, 2115–2126 (2018).

Guenova E., et al. TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma. Clin. Cancer Res. 19, 3755–3763 (2013).

Lee, B. N. et al. Dysregulated synthesis of intracellular type 1 and type 2 cytokines by T cells of patients with cutaneous T-cell lymphoma. Clin. Diagn. Lab. Immunol. 6, 79–84 (1999).

Vowels, B. R., Cassin, M., Vonderheid, E. C. & Rook, A. H. Aberrant cytokine production by Sezary syndrome patients: cytokine secretion pattern resembles murine Th2 cells. J. Invest. Dermatol. 99, 90–94 (1992).

Yamanaka, K. et al. Expression of interleukin-18 and caspase-1 in cutaneous T-cell lymphoma. Clin. Cancer Res. 12, 376–382 (2006).

Wysocka, M. et al. Sezary syndrome patients demonstrate a defect in dendritic cell populations: effects of CD40 ligand and treatment with GM-CSF on dendritic cell numbers and the production of cytokines. Blood 100, 3287–3294 (2002).

Zhang, Q. et al. Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc. Natl Acad. Sci. USA 93, 9148–9153 (1996).

Kasprzycka, M. et al. Gamma c-signaling cytokines induce a regulatory T cell phenotype in malignant CD4+ T lymphocytes. J. Immunol. 181, 2506–2512 (2008).

Krejsgaard, T. et al. Malignant Tregs express low molecular splice forms of FOXP3 in Sezary syndrome. Leukemia 22, 2230–2239 (2008).

Krejsgaard, T. et al. Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation. Blood 124, 761–770 (2014).

Bouaziz, J. D. et al. Circulating natural killer lymphocytes are potential cytotoxic effectors against autologous malignant cells in sezary syndrome patients. J. Invest. Dermatol. 125, 1273–1278 (2005).

Wilcox, R. A. Cutaneous T-cell lymphoma: 2017 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 92, 1085–1102 (2017).

Berger, C. L. et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 105, 1640–1647 (2005).

Klemke, C. D. et al. Histopathological and immunophenotypical criteria for the diagnosis of Sezary syndrome in differentiation from other erythrodermic skin diseases: a European Organisation for Research and Treatment of Cancer (EORTC) Cutaneous Lymphoma Task Force Study of 97 cases. B. J. Dermatol. 173, 93–105 (2015).

Klemke, C. D. et al. Paucity of FOXP3+ cells in skin and peripheral blood distinguishes Sezary syndrome from other cutaneous T-cell lymphomas. Leukemia 20, 1123–1129 (2006).

Capriotti, E. et al. Expression of T-plastin, FoxP3 and other tumor-associated markers by leukemic T-cells of cutaneous T-cell lymphoma. Leuk. Lymphoma 49, 1190–1201 (2008).

Heid, J. B. et al. FOXP3+CD25- tumor cells with regulatory function in Sezary syndrome. J. Invest. Dermatol. 129, 2875–2885 (2009).

Shareef, M. M., Elgarhy, L. H. & Wasfy Rel, S. Expression of Granulysin and FOXP3 in Cutaneous T Cell Lymphoma and Sezary Syndrome. Asian Pac. J. Cancer Prev. 16, 5359–5364 (2015).

Wada, D. A., Wilcox, R. A., Weenig, R. H. & Gibson, L. E. Paucity of intraepidermal FoxP3-positive T cells in cutaneous T-cell lymphoma in contrast with spongiotic and lichenoid dermatitis. J. Cutan. Pathol. 37, 535–541 (2010).

Borcherding, N. et al. Single-cell profiling of cutaneous T-cell lymphoma reveals underlying heterogeneity associated with disease progression. Clin Cancer Res. 25, 2996–3005 (2019).

Blaizot, R., Ouattara, E., Fauconneau, A., Beylot-Barry, M. & Pham-Ledard, A. Infectious events and associated risk factors in mycosis fungoides/Sezary syndrome: a retrospective cohort study. Br. J. Dermatol. 179, 1322–1328 (2018).

Axelrod, P. I., Lorber, B. & Vonderheid, E. C. Infections complicating mycosis fungoides and Sezary syndrome. JAMA 267, 1354–1358 (1992).

Mirvish, E. D., Pomerantz, R. G. & Geskin, L. J. Infectious agents in cutaneous T-cell lymphoma. J. Am. Acad. Dermatol. 64, 423–431 (2011).

Odum, N. et al. Investigating heredity in cutaneous T-cell lymphoma in a unique cohort of Danish twins. Blood Cancer J. 7, e517 (2017).

Thode, C. et al. Malignant T cells secrete galectins and induce epidermal hyperproliferation and disorganized stratification in a skin model of cutaneous T-cell lymphoma. J. Invest. Dermatol. 135, 238–246 (2015).

Posner, L. E., Fossieck, B. E. Jr, Eddy, J. L. & Bunn, P. A. Jr Septicemic complications of the cutaneous T-cell lymphomas. Am. J. Med. 71, 210–216 (1981).

Baser, S., Onn, A., Lin, E., Morice, R. C. & Duvic, M. Pulmonary manifestations in patients with cutaneous T-cell lymphomas. Cancer 109, 1550–1555 (2007).

Willerslev-Olsen A., et al. Staphylococcus aureus enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma. Blood 127, 1287–1296 (2016).

Willerslev-Olsen, A. et al. Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma. Toxins 5, 1402–1421 (2013).

Lindahl L. M., et al. Antibiotics inhibit tumor and disease activity in cutaneous T cell lymphoma. Blood 134, 1072–1083 (2019).

Willemze, R. et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 105, 3768–3785 (2005).

Kaltoft, K. et al. A continuous T-cell line from a patient with Sezary syndrome. Arch. Dermatol. Res. 279, 293–298 (1987).

Krejsgaard T., et al. Elucidating the role of interleukin-17F in cutaneous T-cell lymphoma. Blood 122, 943–950 (2013).

Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 108, 1571–1579 (2006).

Fujii, H. et al. Activation of Stat5 by interleukin 2 requires a carboxyl-terminal region of the interleukin 2 receptor beta chain but is not essential for the proliferative signal transmission. Proc. Natl Acad. Sci. USA 92, 5482–5486 (1995).

Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

Ko, H. S., Fu, S. M., Winchester, R. J., Yu, D. T. & Kunkel, H. G. Ia determinants on stimulated human T lymphocytes. Occurrence on mitogen- and antigen-activated T cells. J. Exp. Med. 150, 246–255 (1979).

Woetmann, A. et al. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins. Blood 109, 3325–3332 (2007).

Odum, N., Kanner, S. B., Ledbetter, J. A. & Svejgaard, A. MHC class II molecules deliver costimulatory signals in human T cells through a functional linkage with IL-2-receptors. J. Immunol. 150, 5289–5298 (1993).

Fraser, J. D. & Proft, T. The bacterial superantigen and superantigen-like proteins. Immunol. Rev. 225, 226–243 (2008).

Jackow, C. M. et al. Association of erythrodermic cutaneous T-cell lymphoma, superantigen-positive Staphylococcus aureus, and oligoclonal T-cell receptor V beta gene expansion. Blood. 89, 32–40 (1997).

Hamrouni, A., Fogh, H., Zak, Z., Odum, N. & Gniadecki, R. Clonotypic Diversity of the T-cell Receptor Corroborates the Immature Precursor Origin of Cutaneous T-cell Lymphoma. Clin Cancer Res. 25, 3104–3114 (2019).

Gaydosik, A. M. et al. Single-cell lymphocyte heterogeneity in advanced cutaneous T-cell lymphoma skin tumors. Clin. Cancer Res. 25, 4443–4454 (2019).