Staphylococcus aureus enterotoxins induce FOXP3 in neoplastic T cells in Sézary syndrome
Tóm tắt
Từ khóa
Tài liệu tham khảo
Berg, S., Villasenor-Park, J., Haun, P. & Kim, E. J. Multidisciplinary management of mycosis Fungoides/Sezary Syndrome. Curr. Hematol. Malig. Rep. 12, 234–243 (2017).
Kim, E. J. et al. Immunopathogenesis and therapy of cutaneous T cell lymphoma. J. Clin. Investig. 115, 798–812 (2005).
Girardi, M., Heald, P. W. & Wilson, L. D. The pathogenesis of mycosis fungoides. N. Engl. J. Med. 350, 1978–1988 (2004).
Wang, L. et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat. Genet. 47, 1426–1434 (2015).
Ungewickell, A. et al. Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat. Genet. 47, 1056–1060 (2015).
da Silva Almeida, A. C. et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat. Genet. 47, 1465–1470 (2015).
Scarisbrick, J. J., Woolford, A. J., Russell-Jones, R. & Whittaker, S. J. Loss of heterozygosity on 10q and microsatellite instability in advanced stages of primary cutaneous T-cell lymphoma and possible association with homozygous deletion of PTEN. Blood 95, 2937–2942 (2000).
Mao, X. et al. Molecular cytogenetic characterization of Sezary syndrome. Genes Chromosomes Cancer 36, 250–260 (2003).
Bastidas Torres, A. N. et al. Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides. Genes Chromosomes Cancer 57, 653–664 (2018).
Guenova E., et al. TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma. Clin. Cancer Res. 19, 3755–3763 (2013).
Lee, B. N. et al. Dysregulated synthesis of intracellular type 1 and type 2 cytokines by T cells of patients with cutaneous T-cell lymphoma. Clin. Diagn. Lab. Immunol. 6, 79–84 (1999).
Vowels, B. R., Cassin, M., Vonderheid, E. C. & Rook, A. H. Aberrant cytokine production by Sezary syndrome patients: cytokine secretion pattern resembles murine Th2 cells. J. Invest. Dermatol. 99, 90–94 (1992).
Yamanaka, K. et al. Expression of interleukin-18 and caspase-1 in cutaneous T-cell lymphoma. Clin. Cancer Res. 12, 376–382 (2006).
Wysocka, M. et al. Sezary syndrome patients demonstrate a defect in dendritic cell populations: effects of CD40 ligand and treatment with GM-CSF on dendritic cell numbers and the production of cytokines. Blood 100, 3287–3294 (2002).
Zhang, Q. et al. Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc. Natl Acad. Sci. USA 93, 9148–9153 (1996).
Kasprzycka, M. et al. Gamma c-signaling cytokines induce a regulatory T cell phenotype in malignant CD4+ T lymphocytes. J. Immunol. 181, 2506–2512 (2008).
Krejsgaard, T. et al. Malignant Tregs express low molecular splice forms of FOXP3 in Sezary syndrome. Leukemia 22, 2230–2239 (2008).
Krejsgaard, T. et al. Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation. Blood 124, 761–770 (2014).
Bouaziz, J. D. et al. Circulating natural killer lymphocytes are potential cytotoxic effectors against autologous malignant cells in sezary syndrome patients. J. Invest. Dermatol. 125, 1273–1278 (2005).
Wilcox, R. A. Cutaneous T-cell lymphoma: 2017 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 92, 1085–1102 (2017).
Berger, C. L. et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 105, 1640–1647 (2005).
Klemke, C. D. et al. Histopathological and immunophenotypical criteria for the diagnosis of Sezary syndrome in differentiation from other erythrodermic skin diseases: a European Organisation for Research and Treatment of Cancer (EORTC) Cutaneous Lymphoma Task Force Study of 97 cases. B. J. Dermatol. 173, 93–105 (2015).
Klemke, C. D. et al. Paucity of FOXP3+ cells in skin and peripheral blood distinguishes Sezary syndrome from other cutaneous T-cell lymphomas. Leukemia 20, 1123–1129 (2006).
Capriotti, E. et al. Expression of T-plastin, FoxP3 and other tumor-associated markers by leukemic T-cells of cutaneous T-cell lymphoma. Leuk. Lymphoma 49, 1190–1201 (2008).
Heid, J. B. et al. FOXP3+CD25- tumor cells with regulatory function in Sezary syndrome. J. Invest. Dermatol. 129, 2875–2885 (2009).
Shareef, M. M., Elgarhy, L. H. & Wasfy Rel, S. Expression of Granulysin and FOXP3 in Cutaneous T Cell Lymphoma and Sezary Syndrome. Asian Pac. J. Cancer Prev. 16, 5359–5364 (2015).
Wada, D. A., Wilcox, R. A., Weenig, R. H. & Gibson, L. E. Paucity of intraepidermal FoxP3-positive T cells in cutaneous T-cell lymphoma in contrast with spongiotic and lichenoid dermatitis. J. Cutan. Pathol. 37, 535–541 (2010).
Borcherding, N. et al. Single-cell profiling of cutaneous T-cell lymphoma reveals underlying heterogeneity associated with disease progression. Clin Cancer Res. 25, 2996–3005 (2019).
Blaizot, R., Ouattara, E., Fauconneau, A., Beylot-Barry, M. & Pham-Ledard, A. Infectious events and associated risk factors in mycosis fungoides/Sezary syndrome: a retrospective cohort study. Br. J. Dermatol. 179, 1322–1328 (2018).
Axelrod, P. I., Lorber, B. & Vonderheid, E. C. Infections complicating mycosis fungoides and Sezary syndrome. JAMA 267, 1354–1358 (1992).
Mirvish, E. D., Pomerantz, R. G. & Geskin, L. J. Infectious agents in cutaneous T-cell lymphoma. J. Am. Acad. Dermatol. 64, 423–431 (2011).
Odum, N. et al. Investigating heredity in cutaneous T-cell lymphoma in a unique cohort of Danish twins. Blood Cancer J. 7, e517 (2017).
Thode, C. et al. Malignant T cells secrete galectins and induce epidermal hyperproliferation and disorganized stratification in a skin model of cutaneous T-cell lymphoma. J. Invest. Dermatol. 135, 238–246 (2015).
Posner, L. E., Fossieck, B. E. Jr, Eddy, J. L. & Bunn, P. A. Jr Septicemic complications of the cutaneous T-cell lymphomas. Am. J. Med. 71, 210–216 (1981).
Baser, S., Onn, A., Lin, E., Morice, R. C. & Duvic, M. Pulmonary manifestations in patients with cutaneous T-cell lymphomas. Cancer 109, 1550–1555 (2007).
Willerslev-Olsen A., et al. Staphylococcus aureus enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma. Blood 127, 1287–1296 (2016).
Willerslev-Olsen, A. et al. Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma. Toxins 5, 1402–1421 (2013).
Lindahl L. M., et al. Antibiotics inhibit tumor and disease activity in cutaneous T cell lymphoma. Blood 134, 1072–1083 (2019).
Kaltoft, K. et al. A continuous T-cell line from a patient with Sezary syndrome. Arch. Dermatol. Res. 279, 293–298 (1987).
Krejsgaard T., et al. Elucidating the role of interleukin-17F in cutaneous T-cell lymphoma. Blood 122, 943–950 (2013).
Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 108, 1571–1579 (2006).
Fujii, H. et al. Activation of Stat5 by interleukin 2 requires a carboxyl-terminal region of the interleukin 2 receptor beta chain but is not essential for the proliferative signal transmission. Proc. Natl Acad. Sci. USA 92, 5482–5486 (1995).
Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).
Ko, H. S., Fu, S. M., Winchester, R. J., Yu, D. T. & Kunkel, H. G. Ia determinants on stimulated human T lymphocytes. Occurrence on mitogen- and antigen-activated T cells. J. Exp. Med. 150, 246–255 (1979).
Woetmann, A. et al. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins. Blood 109, 3325–3332 (2007).
Odum, N., Kanner, S. B., Ledbetter, J. A. & Svejgaard, A. MHC class II molecules deliver costimulatory signals in human T cells through a functional linkage with IL-2-receptors. J. Immunol. 150, 5289–5298 (1993).
Fraser, J. D. & Proft, T. The bacterial superantigen and superantigen-like proteins. Immunol. Rev. 225, 226–243 (2008).
Jackow, C. M. et al. Association of erythrodermic cutaneous T-cell lymphoma, superantigen-positive Staphylococcus aureus, and oligoclonal T-cell receptor V beta gene expansion. Blood. 89, 32–40 (1997).
Hamrouni, A., Fogh, H., Zak, Z., Odum, N. & Gniadecki, R. Clonotypic Diversity of the T-cell Receptor Corroborates the Immature Precursor Origin of Cutaneous T-cell Lymphoma. Clin Cancer Res. 25, 3104–3114 (2019).