Stable Isotope Labeling Strategy for Protein–Ligand Binding Analysis in Multi-Component Protein Mixtures
Tóm tắt
Described here is a stable isotope labeling protocol that can be used with a chemical modification- and mass spectrometry-based protein–ligand binding assay for detecting and quantifying both the direct and indirect binding events that result from protein–ligand binding interactions. The protocol utilizes an H
2
16
O2 and H
2
18
O2 labeling strategy to evaluate the chemical denaturant dependence of methionine oxidation in proteins both in the presence and absence of a target ligand. The differential denaturant dependence to the oxidation reactions performed in the presence and absence of ligand provides a measure of the protein stability changes that occur as a result of direct interactions of proteins with the target ligand and/or as a result of indirect interactions involving other protein–ligand interactions that are either induced or disrupted by the ligand. The described protocol utilizes the 18O/16O ratio in the oxidized protein samples to quantify the ligand-induced protein stability changes. The ratio is determined using the isotopic distributions observed for the methionine-containing peptides used for protein identification in the LC-MS-based proteomics readout. The strategy is applied to a multi-component protein mixture in this proof-of-principle experiment, which was designed to evaluate the technique’s ability to detect and quantify the direct binding interaction between cyclosporin A and cyclophilin A and to detect the indirect binding interaction between cyclosporin A and calcineurin (i.e., the protein–protein interaction between cyclophilin A and calcineurin that is induced by cyclosporin A binding to cyclophilin A).
Tài liệu tham khảo
Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M.J., Johnston, M., Fields, S., Rothberg, J.M.: A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000)
Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y.L., Ooi, C.E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C.A., Finley Jr., R.L., White, K.P., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shimkets, R.A., McKenna, M.P., Chant, J., Rothberg, J.M.: A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003)
Li, S.M., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., Vidalain, P.O., Han, J.D.J., Chesneau, A., Hao, T., Goldberg, D.S., Li, N., Martinez, M., Rual, J.F., Lamesch, P., Xu, L., Tewari, M., Wong, S.L., Zhang, L.V., Berriz, G.F., Jacotot, L., Vaglio, P., Reboul, J., Hirozane-Kishikawa, T., Li, Q.R., Gabel, H.W., Elewa, A., Baumgartner, B., Rose, D.J., Yu, H.Y., Bosak, S., Sequerra, R., Fraser, A., Mango, S.E., Saxton, W.M., Strome, S., van den Heuvel, S., Piano, F., Vandenhaute, J., Sardet, C., Gerstein, M., Doucette-Stamm, L., Gunsalus, K.C., Harper, J.W., Cusick, M.E., Roth, F.P., Hill, D.E., Vidal, M.: A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004)
Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S.M., Albala, J.S., Lim, J.H., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., Vidal, M.: Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005)
Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L.Y., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W.V., Figeys, D., Tyers, M.: Systematic identification of protein complexes in Saccharomyces cerevisiae by Mass Spectrometry. Nature 415, 180–183 (2002)
Graumann, J., Dunipace, L.A., Seol, J.H., McDonald, W.H., Yates, J.R., Wold, B.J., Deshaies, R.J.: Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Mol. Cell. Proteom. 3, 226–237 (2004)
Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)
Powell, K.D., Ghaemmaghami, S., Wang, M.Z., Ma, L.Y., Oas, T.G., Fitzgerald, M.C.: A general mass spectrometry-based assay for the quantitation of protein–ligand binding interactions in solution. J. Am. Chem. Soc. 124, 10256–10257 (2002)
Zhu, M.M., Rempel, D.L., Du, Z.H., Gross, M.L.: Quantification of protein–ligand interactions by mass spectrometry, titration, and H/D exchange: PLIMSTEX. J. Am. Chem. Soc. 125, 5252–5253 (2003)
Charvatova, O., Foley, B.L., Bern, M.W., Sharp, J.S., Orlando, R., Woods, R.J.: Quantifying protein interface footprinting by hydroxyl radical oxidation and molecular dynamics simulation: application to Galectin-1. J. Am. Soc. Mass Spectrom. 19, 1692–1705 (2008)
Takamoto, K., Chance, M.R.: Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu. Rev. Biophys. Biomol. Struct. 35, 251–276 (2006)
West, G.M., Tang, L., Fitzgerald, M.C.: Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy. Anal. Chem. 80, 4175–4185 (2008)
West, G.M., Tucker, C.L., Xu, T., Park, S.K., Han, X.M., Yates, J.R., Fitzgerald, M.C.: Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements. Proc. Natl. Acad. Sci. U. S. A. 107, 9078–9082 (2010)
West, G.M., Thompson, J.W., Soderblom, E.J., Dubois, L.G., DeArmond, P.D., Moseley, M.A., Fitzgerald, M.C.: Mass spectrometry-based thermal shift assay for protein–ligand binding analysis. Anal. Chem. 82, 5573–5581 (2010)
Gelperin, D.M., White, M.A., Wilkinson, M.L., Kon, Y., Kung, L.A., Wise, K.J., Lopez-Hoyo, N., Jiang, L.X., Piccirillo, S., Yu, H.Y., Gerstein, M., Dumont, M.E., Phizicky, E.M., Snyder, M., Grayhack, E.J.: Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19, 2816–2826 (2005)
Bradford, M.M.: Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)
Nozaki, Y.: The preparation of guanidine hydrochloride. Method Enzymol. 26, 43–50 (1972)
Handschumacher, R.E., Harding, M.W., Rice, J., Drugge, R.J.: Cyclophilin—a specific cytosolic binding-protein for cyclosporin A. Science 226, 544–547 (1984)
Harding, M.W., Handschumacher, R.E.: Cyclophilin, a primary molecular target for cyclosporine—structural and functional implications. Transplantation 46, S29–S35 (1988)
Liu, J., Albers, M.W., Chen, C.M., Schreiber, S.L., Walsh, C.T.: Cloning, expression, and purification of human cyclophilin in Escherichia coli and assessment of the catalytic role of cysteines by site-directed mutagenesis. Proc. Natl. Acad. Sci. U. S. A. 87, 2304–2308 (1990)
Holzman, T.F., Egan, D.A., Edalji, R., Simmer, R.L., Helfrich, R., Taylor, A., Burres, N.S.: Preliminary characterization of a cloned neutral isoelectric form of the human peptidyl prolyl isomerase cyclophilin. J. Biol. Chem. 266, 2474–2479 (1991)
Wang, M.Z., Shetty, J.T., Howard, B.A., Campa, M.J., Patz, E.F., Fitzgerald, M.C.: Thermodynamic analysis of Cyclosporin A binding to Cyclophilin A in a lung tumor tissue lysate. Anal. Chem. 76, 4343–4348 (2004)
Liu, J., Albers, M.W., Wandless, T.J., Luan, S., Alberg, D.G., Belshaw, P.J., Cohen, P., Mackintosh, C., Klee, C.B., Schreiber, S.L.: Inhibition of T cell signaling by imunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. Biochemistry 31, 3896–3901 (1992)
Liu, J., Farmer Jr., J.D., Lane, W.S., Friedman, J., Weissman, I., Schreiber, S.L.: Calcineurin is a common target of cyclophilin-cyclosporin A and Fkbp-Fk506 complexes. Cell 66, 807–815 (1991)
Jin, L., Harrison, S.C.: Crystal structure of human calcineurin complexed with cyclosporin A and human cyclophilin. Proc. Natl. Acad. Sci. U. S. A. 99, 13522–13526 (2002)