Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ye W, Han J, Qin LB, Li YQ, Masami F, Yao H (2012) Emission characteristics of PM10 during sewage sludge combustion. Aerosol Air Qual Res 12(3):420–425. doi: 10.4209/aaqr.2011.10.0164
Díaz I, Lopes AC, Pérez SI, Fdz-Polanco M (2010) Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Bioresour Technol 101(20):7724–7730. doi: 10.1016/j.biortech.2010.04.062
Mostbauer P, Lenz S, Lechner P (2008) MSWI bottom ash for upgrading of biogas and landfill gas. Environ Technol 29(7):757–764. doi: 10.1080/09593330801987061
Tang YQ, Shigematsu T, Ikbal, Morimura S, Kida K (2004) The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38(10):2537–2550. doi: 10.1016/j.watres.2004.03.012
Bruno P, Caselli M, de Gennaro G, Solito M, Tutino M (2007) Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers. Waste Manage 27(4):539–544. doi: 10.1016/j.wasman.2006.03.006
Lens PNL, Pol LWH (2000) Environmental technologies to treat sulfur pollution: principles and engineering. IWA Publishing, London
Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: an introduction. Wiley-VCH, Weinheim
Firer D, Friedler E, Lahav O (2008) Control of sulfide in sewer systems by dosage of iron salts: comparison between theoretical and experimental results, and practical implications. Sci Total Environ 392(1):145–156. doi: 10.1016/j.scitotenv.2007.11.008
Fox P, Venkatasubbiah V (1996) Coupled anaerobic/aerobic treatment of high-sulfate wastewater with sulfate reduction and biological sulfide oxidation. Water Sci Technol 34(5–6):359–366. doi: 10.1016/0273-1223(96)00666-X
Khanal SK, Huang JC (2003) ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater. Water Res 37(9):2053–2062. doi: 10.1016/S0043-1354(02)00618-8
Su LH, Zhao YC (2012) Chemical reduction of odour in fresh sewage sludge in the presence of ferric hydroxide. Environ Technol 34(2):165–172. doi: 10.1080/09593330.2012.689362
Karn B, Kuiken T, Otto M (2011) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Ciênc Saúde Coletiva 16(1):165–178
Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48. doi: 10.1016/S1748-0132(06)70048-2
Li XQ, Brown DG, Zhang WX (2007) Stabilization of biosolids with nanoscale zero-valent iron (nZVI). J Nanopart Res 9(2):233–243. doi: 10.1007/s11051-006-9187-1
Yan WL, Herzing AA, Kiely CJ, Zhang WX (2010) Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. J Contam Hydrol 118(3–4):96–104. doi: 10.1016/j.jconhyd.2010.09.003
Martin JE, Herzing AA, Yan WL, Li XQ, Koel BE, Kiely CJ, Zhang WX (2008) Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir 24(8):4329–4334. doi: 10.1021/La703689k
Sun YP, Li XQ, Cao JS, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface 120(1–3):47–56. doi: 10.1016/j.cis.2006.03.001
Karri S, Sierra-Alvarez R, Field JA (2005) Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnol Bioeng 92(7):810–819. doi: 10.1002/Bit.20623
Zhen GY, Lu XQ, Cheng XB, Chen H, Yan XF, Zhao YC (2012) Hydration process of the aluminate 12CaO·7Al2O3-assisted Portland cement-based solidification/stabilization of sewage sludge. Constr Build Mater 30:675–681. doi: 10.1016/j.conbuildmat.2011.12.049
Smith JA, Carliell-Marquet CM (2008) The digestibility of iron-dosed activated sludge. Bioresour Technol 99(18):8585–8592. doi: 10.1016/j.biortech.2008.04.005
Smith JA, Carliell-Marquet CM (2009) A novel laboratory method to determine the biogas potential of iron-dosed activated sludge. Bioresour Technol 100(5):1767–1774. doi: 10.1016/j.biortech.2008.10.004
Wieckowska J (1995) Catalytic and adsorptive desulphurization of gases. Catal Today 24(4):405–465. doi: 10.1016/0920-5861(95)00021-7
Cantrell KJ, Yabusaki SB, Engelhard MH, Mitroshkov AV, Thornton EC (2003) Oxidation of H2S by iron oxides in unsaturated conditions. Environ Sci Technol 37(10):2192–2199. doi: 10.1021/Es020994o
Wang CM, Baer DR, Amonette JE, Engelhard MH, Antony J, Qiang Y (2009) Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J Am Chem Soc 131(25):8824–8832. doi: 10.1021/Ja900353f
Shu ZY, Wang J, Huang Y (2011) Study of inactivating sulfate reducing bacteria with zero-valent iron nanoparticles (in Chinese). Environ Sci 32(10):3040–3044
Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427(6977):829–832. doi: 10.1038/Nature02321
Gu BH, Watson DB, Wu LY, Phillips DH, White DC, Zhou JZ (2002) Microbiological characteristics in a zero-valent iron reactive barrier. Environ Monit Assess 77(3):293–309. doi: 10.1023/A:1016092808563
Bhattacharya SK, Uberoi V, Dronamraju MM (1996) Interaction between acetate fed sulfate reducers and methanogens. Water Res 30(10):2239–2246. doi: 10.1016/0043-1354(95)00238-3
Carliell-Marquet C (2000) The effect of phosphorus enrichment on fractionation of metals and phosphorus in anaerobically digested sludge. Dissertation, Loughborough University of Technology