Stability in Matching Markets with Complex Constraints
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ashlagi I, 2020, Oper. Res., 68, 467
Bronfman S, 2018, ACM Trans. Econom. Comput., 6, 21
Correa J, Epstein R, Escobar J, Rios I, Bahamondes B, Bonet C, Epstein N, (2019) School choice in Chile. Proc. 2019 ACM Conf. Econom. Comput. (Association for Computing Machinery, New York), 325–343.
Dean BC, Goemans MX, Immorlica N (2006) The unsplittable stable marriage problem. Navarro G, Bertossi L, Kohayakawa Y, eds. 4th IFIP Internat. Conf. Theoret. Comput. Sci. TCS 2006, IFIP International Federation for Information Processing, vol. 209 (Springer, Boston), 65–75.
Fragiadakis D, 2016, ACM Trans. Econom. Comput., 4, 6
Gonczarowski YA, Nisan N, Kovalio L, Romm A (2019) Matching for the Israeli “Mechinot” gap-year programs: Handling rich diversity requirements. EC '19: Proc. 2019 ACM Conf. Econom. Comput. (Association for Computing Machinery, New York), 321.
Huang C-C (2010) Classified stable matching. SODA '10: Proc. 21st Annual ACM-SIAM Sympos. Discrete Algorithms, Philadelphia, 1235–1253.
Jagadeesan R (2017) Complementary inputs and the existence of stable outcomes in large trading networks. EC '17: Proc. 2017 ACM Conf. Econom. Comput. (Association for Computing Machinery, New York), 265.
Roth AE, 1991, Amer. Econom. Rev., 81, 415
Roth AE, 1994, Amer. Econom. Rev., 84, 992
Sönmez T, Yenmez MB (2019a) Affirmative action with overlapping reserves. Technical report, Boston College Department of Economics, Boston.