Stability and symmetry of ion-induced surface patterning

Materials Theory - Tập 1 - Trang 1-23 - 2017
Christopher S. R. Matthes1, Nasr M. Ghoniem1, Daniel Walgraef2
1University of California, Los Angeles, USA
2IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Palma de Mallorca, Spain

Tóm tắt

We present a continuum model of ion-induced surface patterning. The model incorporates the atomic processes of sputtering, re-deposition and surface diffusion, and is shown to display the generic features of the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear and non-linear stability analyses of the evolution equation give estimates of the emerging pattern wavelength and spatial symmetry. The analytical theory is confirmed by numerical simulations of the evolution equation with the Fast Fourier Transform method, where we show the influence of the incident ion angle, flux, and substrate surface temperature. It is shown that large local geometry variations resulting in quadratic non-linearities in the evolution equation dominate pattern selection and stability at long time scales.

Tài liệu tham khảo

MA Makeev, R Cuerno, A-L Barabasi, Morphology of ion-sputtered surfaces. Nucl. Inst. Methods Phys. Res. Sect. B: Beam Interactions Mater. Atoms. 197(3), 185–227 (2002). G Costantini, S Rusponi, FB de Mongeot, C Boragno, U Valbusa, Periodic structures induced by normal-incidence sputtering on ag (110) and ag (001): flux and temperature dependence. J. Phys. Condens. Matter. 13(26), 5875 (2001). S Habenicht, Morphology of graphite surfaces after ion-beam erosion. Phys. Rev. B. 63(12), 125419 (2001). M Navez, C Sella, D Chaperot, Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering. Czetch Repub. Acad. Sci. 254:, 240 (1962). S Rusponi, C Boragno, U Valbusa, Ripple structure on ag (110) surface induced by ion sputtering. Phys. Rev. Lett. 78(14), 2795 (1997). U Valbusa, C Boragno, FB de Mongeot, Nanostructuring surfaces by ion sputtering. J. Phys. Condens. Matter. 14(35), 8153 (2002). P Sigmund, A mechanism of surface micro-roughening by ion bombardment. J. Mater. Sci. 8(11), 1545–1553 (1973). RM Bradley, JME Harper, Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Technol. A. Vac. Surf. Films. 6(4), 2390–2395 (1988). D Walgraef, NM Ghoniem, J Lauzeral, Deformation patterns in thin films under uniform laser irradiation. Phys. Rev. B. 56(23), 15361 (1997). J Lauzeral, D Walgraef, NM Ghoniem, Rose deformation patterns in thin films irradiated by focused laser beams. Phys. Rev. Lett. 79(14), 2706 (1997). J Muñoz-García, L Vazquez, M Castro, R Gago, A Redondo-Cubero, A Moreno-Barrado, R Cuerno, Self-organized nanopatterning of silicon surfaces by ion beam sputtering. Mater. Sci. Eng. R: Rep. 86(1–44) (2014). P Sigmund, Theory of sputtering. i. sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184(2), 383 (1969). R Cuerno, A-L Barabási, Dynamic scaling of ion-sputtered surfaces. Phys. Rev. Lett. 74(23), 4746 (1995). WW Mullins, Theory of thermal grooving. J. Appl. Phys. 28(3), 333–339 (1957). RJ Asaro, WA Tiller, Interface morphology development during stress corrosion cracking: Part i.via surface diffusion. Metall. Trans. 3(7), 1789–1796 (1972). WH Yang, DJ Srolovitz, Surface morphology evolution in stressed solids: surface diffusion controlled crack initiation. J. Mech. Phys. Solids. 42(10), 1551–1574 (1994). C Godrèche, Solids far from Equilibrium, volume 1 (Cambridge University Press, Cambridge, 1991). SF Edwards, DR Wilkinson, The surface statistics of a granular aggregate. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 381(1780), 17–31 (1982). J Villain, Continuum models of crystal growth from atomic beams with and without desorption. J. Phys. I. 1(1), 19–42 (1991). Y Kuramoto, T Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55(2), 356–369 (1976). GI Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames: Derivation of basic equations. Acta Astronaut. 4(11), 1177–1206 (1977). A Keller, S Facsko, Ion-induced nanoscale ripple patterns on si surfaces: theory and experiment. Materials. 3(10), 4811–4841 (2010). S Facsko, T Bobek, A Stahl, H Kurz, T Dekorsy, Dissipative continuum model for self-organized pattern formation during ion-beam erosion. Phys. Rev. B. 69(15), 153412 (2004). RM Bradley, Redeposition of sputtered material is a nonlinear effect. Phys. Rev. B. 83(7), 075404 (2011). KH De Grys, A Mathers, B Welander, V Khayms, Demonstration of 10,400 hours of operation on 4.5 kw qualification model hall thruster. AIAA Pap, 6698 (2010). N Ghoniem, D Walgraef, Instabilities and Self-organization in Materials (Oxford Univ. Press, Oxford, 2008). D Walgraef, Spatio-Temporal Pattern Formation: with Examples from Physics, Chemistry, and Materials Science (Springer Verlag, Berlin, 1997). FC Motta, PD Shipman, RM Bradley, Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. J. Phys. D. Appl. Phys. 45(12), 122001 (2012). FC Motta, PD Shipman, RM Bradley, Theory of nanoscale pattern formation produced by oblique-incidence ion bombardment of binary compounds. Phys. Rev. B. 90(8), 085428 (2014). G Dewel, S Métens, M’F Hilali, P Borckmans, CB Price, Resonant patterns through coupling with a zero mode. Phys. Rev. Lett. 74:, 4647 (1995). SM Cox, PC Matthews, Instability and localisation of patterns due to a conserved quantity. Phys. D. 175:, 196–219 (2003). JM Hyman, B Nicolaenko, The Kuramoto-Sivashinsky equation: A bridge between pdes and dynamical systems. Phys. D. 18:, 113–126 (1986). JM Hyman, B Nicolaenko, S Zaleski, Order and complexity in the kuramoto-sivashinsky model of weakly turbulent interfaces. Phys. D. 23:, 265–292 (1986). IG Kevrekidis, B Nicolaenko, JC Scovel, Back in the saddle again: A computer assisted study of the kuramoto-sivashinsky equation. SIAM J. Appl. Math. 50:, 760–790 (1990). P Cvitanovíc, RL Davidchack, E Siminos, On the state space geometry of the kuramotosivashinsky flow in a periodic domain. SIAM J. Appl. Dyn. Syst. 9(1), 1–33 (2010). M Paniconi, KR Elder, Stationary, dynamical, and chaotic states of the two-dimensional damped kuramoto-sivashinsky equation. Phys. Rev. E. 56(3), 2713–2721 (1997). H Gomez, J Paris, Numerical simulation of asymptotic states of the damped kuramoto-sivashinsky equation. Phys. Rev. E. 83(4), 046702 (2011). M Rost, J Krug, Anisotropic kuramoto-sivashinsky equation for surface growth and erosion. Phys. Rev. Lett. 75:, 3894–3898 (1995). E Vitral, Nano-patterning of surfaces by ion sputtering: Numerical study of the anisotropic damped kuramoto-sivashinsky equation. Master’s thesis, Universidade do Estado do Rio de Janeiro, (2015). C Misbah, A Valance, Secondary instabilities in the stabilized kuramoto-sivashinsky equation. Phys. Rev. E. 49(1), 166–183 (1994). CSR Matthes, NM Ghoniem, GZ Li, TS Matlock, DM Goebel, CA Dodson, RE Wirz, Fluence-dependent sputtering yield of micro-architectured materials. Appl. Surf. Sci. 407C:, 223–235 (2017). GZ Li, TS Matlock, DM Goebel, RE Wirz, CSR Matthes, NM Ghoniem, in In situ plasma sputtering and angular distribution measurements for structured molybdenum surfaces.6. Plasma Sources Science and Technology 26. (2017), p. 065002.