Stability and Paradox in Algorithmic Logic

Springer Science and Business Media LLC - Tập 36 Số 1 - Trang 61-95 - 2006
Wayne Aitken1, Jeffrey A. Barrett2
1California State University, San Marcos, USA
2UC Irvine, Irvine, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aitken, W. and Barrett J. A. (2004): Computer implication and the curry paradox, J. Philos. Logic 33, 631–637.

Aitken, W. and Barrett, J. A.: Abstraction in Algorithmic Logic (preprint).

Cantini, A. (1996): Logical frameworks for truth and abstraction: An axiomatic study, North-Holland. ISBN: 0-444-82306-9.

Cantini, A. (2003): The undecidability of Gri $$\breve{{\text{s}}}$$ in's set theory, Stud. Log. 74(3), 345–368.

Feferman, S. (1984): Toward useful type-free theories, J. Symb. Log. 49, 75–111.

Field, H. (2004): The consistency of the naïve theory of properties, Philos. Q. 54(214), 78–104.

Fitch, F. B. (1969): A method for avoiding the Curry paradox, in N. Rescher (ed.), Essays in Honor of Carl G. Hempel, pp. 255–265.

Girard, J.-Y. (1998): Light linear logic, Inform. Comput. 143(2), 175–204.

Link, G. (ed.) (2004): One hundred years of Russell's paradox: Mathematics, logic, philosophy, de Gruyter. ISBN 3-11-017438-3.

Myhill, J. (1984) Paradoxes, Synthese 60, 129–143.

Orilia, F. (2000): Property theory and the revision theory of definitions, J. Symb. Log. 65(1), 212–246.

Petersen, U. (2000): Logic without contraction as based on inclusion and unrestricted abstraction, Stud. Log. 64(3), 365–403.

Restall, G. (1994): On logics without contraction, doctoral dissertation, University of Queensland.

Terui, K. (2004) Light affine set theory: A naive set theory of polynomial time, Stud. Log. 77(1), 9–40.

Weir, A. (1998): Naïve set theory, paraconsistency and indeterminacy. I., Log. Anal. (N.S.) 41(161–163), 219–266.