Ssanghwa-tang, an oriental herbal cocktail, exerts anti-melanogenic activity by suppression of the p38 MAPK and PKA signaling pathways in B16F10 cells

Aeyung Kim1, Nam–Hui Yim1, Myung Im1, Young Pil Jung1, Chun Liang1, Won‐Kyung Cho1, Jin Yeul1
1Korean Medicine (KM)-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine (KIOM), 483 Expo-ro, Yuseong-gu, Daejeon, 305-811, Republic of Korea

Tóm tắt

Abstract Background Ssanghwa-tang (SHT) is a widely used medication for the treatment of fatigue, pain, inflammation, hypothermia, erectile dysfunction, cancer, and osteoporosis in Asia, however, role of SHT on the melanin synthesis has not been checked previously. Thus, the present study was designed to determine the effect of SHT on α-melanocyte stimulating hormone (α-MSH)-induced melanogensis and its mechanisms of action in murine B16F10 melanoma cells. Method Cellular melanin content and tyrosinase activity in murine B16F10 melanoma cells were determined after α-MSH stimulation with or without pre-treatment of SHT at the concentration of 250 and 500 μg/ml. Expression level of tyrosinase, tyrosinase-related protein 1 (TRP-1), TRP-2, microphthalmia-associated transcription factor (MITF), and activation of c-AMP-dependent protein kinase (PKA), c-AMP-related element binding protein (CREB), and mitogen-activated protein kinases (MAPKs) were examined by Western blot analysis. Results SHT significantly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of MITF, tyrosinase, and TRP-1. In addition, SHT remarkably suppressed tyrosinase, CRE, and MITF luciferase reporter activity in a resting state as well as in α-MSH-stimulating condition. Phosphorylation of p38 MAPK by α-MSH stimulation was efficiently blocked by SHT pre-treatment. Moreover, SHT as an herbal cocktail showed synergistic anti-melanogenic effect compared with that of each single constituent herb. Conclusion SHT efficiently inhibited c-AMP-induced melanin synthesis in B16F10 cells via suppression of PKA and p38 MAPK signaling pathways and subsequently decreased the level of CREB phosphorylation, MITF, and melanogenic enzymes. These results indicate that SHT may be useful as herbal medicine for treating hyperpigmentation and cosmetics as a skin-whitening agent.

Từ khóa


Tài liệu tham khảo

Schallreuter KU, Kothari S, Chavan B, Spencer JD: Regulation of melanogenesis–controversies and new concepts. Exp Dermatol. 2008, 17 (5): 395-404. 10.1111/j.1600-0625.2007.00675.x.

Naish-Byfield S, Riley PA: Tyrosinase kinetics: failure of acceleration in oxidation of ring-blocked monohydric phenol substrate. Pigment Cell Res. 1998, 11 (2): 94-97. 10.1111/j.1600-0749.1998.tb00716.x.

Friedmann PS, Gilchrest BA: Ultraviolet radiation directly induces pigment production by cultured human melanocytes. J Cell Physiol. 1987, 133 (1): 88-94. 10.1002/jcp.1041330111.

Busca R, Ballotti R: Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000, 13 (2): 60-69. 10.1034/j.1600-0749.2000.130203.x.

Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP, Ballotti R: Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol. 1998, 142 (3): 827-835. 10.1083/jcb.142.3.827.

Costin GE, Hearing VJ: Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 2007, 21 (4): 976-994. 10.1096/fj.06-6649rev.

Kim YJ, Kang KS, Yokozawa T: The anti-melanogenic effect of pycnogenol by its anti-oxidative actions. Food Chem Toxicol. 2008, 46 (7): 2466-2471. 10.1016/j.fct.2008.04.002.

Chang TS: An updated review of tyrosinase inhibitors. Int J Mol Sci. 2009, 10 (6): 2440-2475. 10.3390/ijms10062440.

Nakagawa M, Kawai K: Contact allergy to kojic acid in skin care products. Contact Dermatitis. 1995, 32 (1): 9-13. 10.1111/j.1600-0536.1995.tb00832.x.

Shim KS, Lee JH, Ma CJ, Lee YH, Choi SU, Lee JH, Ma JY: Inhibitory effect of Ssangwha-tang on bone loss in ovariectomized rats. Animal Cell Syst. 2010, 14: 283-289. 10.1080/19768354.2010.528615.

Han YH, Shim CK: Effect of a blended Korean herbal remedy, Ssang Wha Tang, on the liver cytoplasmic protein binding of sulfobromophthalein in rats. Phytother Res. 1989, 3: 109-111. 10.1002/ptr.2650030309.

Lv N, Koo JH, Yoon HY, Yu J, Kim KA, Choi IW, Kwon KB, Kwon KS, Kim HU, Park JW: Effect of Angelica gigas extract on melanogenesis in B16 melanoma cells. Int J Mol Med. 2007, 20 (5): 763-767.

Berry MN, Friend DS: High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969, 43 (3): 506-520. 10.1083/jcb.43.3.506.

Kim A, Yang Y, Lee MS, Yoo YD, Lee HG, Lim JS: NDRG2 gene expression in B16F10 melanoma cells restrains melanogenesis via inhibition of Mitf expression. Pigment Cell Melanoma Res. 2008, 21 (6): 653-664. 10.1111/j.1755-148X.2008.00503.x.

Yang MC, Kim DS, Ma JY: Bioconversion composition of Ssangwha-tang fermented by Lactobacillus fermentum. Biotechnol Bioproc Eng. 2012, 17: 84-92. 10.1007/s12257-011-0296-z.

Kim DS, Jeong YM, Park IK, Hahn HG, Lee HK, Kwon SB, Jeong JH, Yang SJ, Sohn UD, Park KC: A new 2-imino-1,3-thiazoline derivative, KHG22394, inhibits melanin synthesis in mouse B16 melanoma cells. Biol Pharm Bull. 2007, 30 (1): 180-183. 10.1248/bpb.30.180.

Smalley K, Eisen T: The involvement of p38 mitogen-activated protein kinase in the alpha-melanocyte stimulating hormone (alpha-MSH)-induced melanogenic and anti-proliferative effects in B16 murine melanoma cells. FEBS Lett. 2000, 476 (3): 198-202. 10.1016/S0014-5793(00)01726-9.

Saha B, Singh SK, Sarkar C, Bera R, Ratha J, Tobin DJ, Bhadra R: Activation of the Mitf promoter by lipid-stimulated activation of p38-stress signalling to CREB. Pigment Cell Res. 2006, 19 (6): 595-605. 10.1111/j.1600-0749.2006.00348.x.

Jang JY, Kim HN, Kim YR, Choi YH, Kim BW, Shin HK, Choi BT: Aqueous fraction from Cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in B16F10 cells. J Ethnopharmacol. 2012, 141 (1): 338-344. 10.1016/j.jep.2012.02.043.

Ye Y, Chu JH, Wang H, Xu H, Chou GX, Leung AK, Fong WF, Yu ZL: Involvement of p38 MAPK signaling pathway in the anti-melanogenic effect of San-bai-tang, a Chinese herbal formula, in B16 cells. J Ethnopharmacol. 2010, 132 (2): 533-535. 10.1016/j.jep.2010.09.007.

Corson TW, Crews CM: Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell. 2007, 130 (5): 769-774. 10.1016/j.cell.2007.08.021.

Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ: The challenge of finding a cure for HIV infection. Science. 2009, 323 (5919): 1304-1307. 10.1126/science.1165706.

Kiyohara H, Matsumoto T, Yamada H: Combination effects of herbs in a multi-herbal formula: expression of Juzen-taiho-to's immuno-modulatory activity on the intestinal immune system. Evid base Compl Alternative Med. 2004, 1 (1): 83-91. 10.1093/ecam/neh004.

Matsuda H, Murata K, Itoh K, Masuda M, Naruto S: Melanin Hyperpigmentation Inhibitors from Natural Resources. Advances in Malignant Melanoma-Clinical and Research Perspectives. 2011, 171-184.

Lee KT, Kim BJ, Kim JH, Heo MY, Kim HP: Biological screening of 100 plant extracts for cosmetic use (I): inhibitory activities of tyrosinase and DOPA auto-oxidation. Int J Cosmet Sci. 1997, 19 (6): 291-298. 10.1111/j.1467-2494.1997.tb00193.x.

Jeong JA, Kwon SH, Kim YJ, Shin CS, Lee CH: Investigation of antioxidative and tyrosinase inhibitory activities of the seed extracts. Kor J Plant Res. 2007, 20 (2): 177-188.

Jung YO, Park NB, Jung SJ, Kwak JS, Han JH: Effect of whitening, anti-aging on extract of Paeonia lactiflora flower. Kor J Ori Med Physiol Pathol. 2010, 24 (3): 452-456.

Kim DS, Park SH, Lee HK, Choo SJ, Lee JH, Song GY, Yoo ID, Kwon SB, Na JI, Park KC: Hypopigmentary action of dihydropyranocoumarin D2, a decursin derivative, as a MITF-degrading agent. J Nat Prod. 2010, 73 (5): 797-800. 10.1021/np900455j.

Lee K, Lee JH, Boovanahalli SK, Choi Y, Choo SJ, Yoo ID, Kim DH, Yun MY, Lee GW, Song GY: Synthesis of (S)-(+)-decursin and its analogues as potent inhibitors of melanin formation in B16 murine melanoma cells. Eur J Med Chem. 2010, 45 (12): 5567-5575. 10.1016/j.ejmech.2010.09.006.

Okabe Y, Shimazu T, Tanimoto H: Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. J Sci Food Agric. 2011, 91 (4): 658-663. 10.1002/jsfa.4228.