Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của diện tích squish của đầu piston đến sự truyền nhiệt hỗn loạn trong động cơ đốt trong
Tóm tắt
Từ khóa
#Diện tích squish #truyền nhiệt #mô phỏng dòng chảy lớn #động cơ đốt trong #phương pháp SIMPLE-CTài liệu tham khảo
Amsden, A.A., Ramshaw, J.D., O’Rourke, P.J. and Dukowicz, J.K. (1985), “KIVA: a computer program for two‐ and three‐dimensional fluid flows with chemical reactions and fuel sprays”, Los Alamos National Lab. Report, LA‐10245‐MS, Los Alamos, CA.
Assanis, D.N. and Badillo, E. (1989, Evaluation of Alternative Thermocouple Designs for Transient Heat Transfer Measurements in Metal and Ceramic Engines, SAE 890571.
Dao, K., Uyehara, O.A. and Myers, P.S. (1973), Heat Transfer Rates at Gas‐Wall Interfaces in Motored Piston Engine, SAE 730632.
Fureby, C., Tabor, G., Weller, H.G and Gosman, A.D. (1997), “A comparative study of subgrid scale models in homogeneous isotropic turbulence”, Phys. Fluids, Vol. 9 No. 5, pp. 1416‐29.
Galperin, B. and Orszag, S. (1993), Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge University Press, Cambridge.
Gosman, A.D., Tsui, Y.Y. and Watkins, A.P. (1984), Calculation of Three Dimensional Air Motion Model Engines, SAE 840229.
Ikegami, M., Kidoguchi, Y. and Nishiwaki, K. (1986), A Multidimensional Model Prediction of Heat Transfer in Non‐Fired Engines, SAE 860467.
Kershaw, D. (1978), “The incomplete Cholesky‐conjugate gradient method for the iterative solution of systems of linear equations”, J. Comp. Phys., Vol. 26, pp. 43‐65.
Kondoh, T., Fukumoto, A., Ohsawa, K. and Ohkubo, Y. (1986), An Assessment of a Multi‐Dimensional Numerical Method to Predict the Flow in Internal Combustion Engines, SAE 850500.
Lawton, B. (1987), “Effect of compression and expansion on instantaneous heat transfer in reciprocating internal combustion engines”, Proc. Instn. Mech. Engrs., Vol. 201 No. A3, pp. 175‐85.
Morel, T., Wahiduzzaman, S., Tree, D.R. and Dewitt, D.P. (1987), Effect of Speed, Load, and Location on Heat Transfer in a Diesel Engine – Measurement and Predictions, SAE 870154.
Raithby, G. and Van Doormaal, I. (1984), “Enhancements of the SIMPLE method for predicting incompressible fluid flows”, Num. Heat Trans., Vol. 7, pp. 147‐63.
Smagorinsky, J. (1963), “General circulation experiments with the primitive equations”, Mon. Wea. Rev., Vol. 91, March, pp. 99‐164.
Smith, J.R. (1996), An Accurate Navier‐Stokes Solver With an Application to Unsteady Flows, West Virginia University, Morgantown, WV.
Tsui, Y.Y. (1991), “A study of upstream weighted high‐order differencing for approximation to flow convection”, Int. J. Numerical Methods in Fluids, Vol. 13, pp. 167‐99.
Tu, J.Y. and Fuchs, L. (1992), “Overlapping grids and multigrid methods for three‐dimensional unsteady flow calculation in IC engines”, Int. J. Num. Methods in Fluids, Vol. 15, pp. 693‐714.
Van Der Vorst, H. (1992), “BI‐CGSTAB: a fast and smoothly converging variant of BI‐CG for the solution of nonsymmetric linear system”, SIAM J. Sci. Stat. Comput., Vol. 13 No. 2, pp. 631‐44.
Wilcox, D. (1993), Turbulence Modeling in CFD, DCW Industries, Inc., Glendale, CA.
Woschni, G. and Fieger, J. (1980), Determination of Local Heat Transfer Coefficients at the Piston of a High Speed Diesel Engine by Evaluation of Measured Temperature Distribution, SAE 790834.
Yamada, S., Paulsen, H. and Farrel, P. (1989), Heat Transfer Measurements in a Motored Engine, SAE 890313.
Yang, J., Pierce, P., Martin, J.K. and Foster, D.E. (1988), “Heat transfer predictions and experiments in a motored engine”, SAE Trans. 881314, Vol. 97, Section 6, pp. 1608‐22.